Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering Science and Materials

Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows Jul 2015

Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows

Graduate Theses and Dissertations

The deleterious effects of atomic and molecular hydrogen on the mechanical properties of metals have long been observed. Although several theories exist describing the mechanisms by which hydrogen negatively influences the failure of materials, a consensus has yet to be reached regarding the exact mechanism or combination of mechanisms. Two mechanisms have gained support in explaining hydrogen’s degradative role in non-hydride forming metals: hydrogen-enhanced localized plasticity and hydrogen-enhanced decohesion. Yet, the interplay between these mechanisms and microstructure in metallic materials has not been explained. Accordingly, for this thesis, the three main objectives are: (i) to develop a numerical methodology to …


Detailed Finite Element Analysis And Preliminary Study Of The Effects Of Friction And Fastener Pre-Tension On The Mechanical Behavior Of Fastened Built-Up Members, Francisco Javier Bonachera Martin Apr 2014

Detailed Finite Element Analysis And Preliminary Study Of The Effects Of Friction And Fastener Pre-Tension On The Mechanical Behavior Of Fastened Built-Up Members, Francisco Javier Bonachera Martin

Open Access Theses

The characterization of fatigue resistance is one of the main concerns in structural engineering, a concern that is particularly important in the evaluation of existing bridge members designed or erected before the development of fatigue design provisions. The ability of a structural member to develop alternate load paths after the failure of a component is known as member-level or internal redundancy. In fastened built-up members, these alternate load paths are affected by the combination of fastener pre-tension and friction between the structural member components in contact. In this study, a finite element methodology to model and analyze riveted and bolted …


Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang Oct 2013

Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang

Open Access Dissertations

Photo-induced water splitting of water into H2 and O2 has been a major focus in the development of clean and renewable energy. The development of viable and efficient catalysts that facilitates O2 production remains the major challenge in the study of the corresponding half-reaction of water oxidation. There are plenty of metal oxides reported active in the catalysis of water oxidation. However, several important performance bench marks of those materials, such as the non-stoichiometric production of O2, slow reaction rate and/or low quantum efficiency, remain to be improved.

Ruthenium oxide (RuO2) has long been known as one of the most …


Creep, Fatigue And Creep-Fatigue Interactions In Modified 9% Cr - 1% Mo (P91) Steels, Valliappa Kalyanasundaram May 2013

Creep, Fatigue And Creep-Fatigue Interactions In Modified 9% Cr - 1% Mo (P91) Steels, Valliappa Kalyanasundaram

Graduate Theses and Dissertations

Grade P91 steel, from the class of advanced high-chrome ferritic steels, is one of the preferred materials for many elevated temperature structural components. Creep-fatigue (C-F) interactions, along with oxidation, can accelerate the kinetics of damage accumulation and consequently reduce such components' life. Hence, reliable C-F test data is required for meticulous consideration of C-F interactions and oxidation, which in turn is vital for sound design practices. It is also imperative to develop analytical constitutive models that can simulate and predict material response under various long-term in-service conditions using experimental data from short-term laboratory experiments. Consequently, the major objectives of the …


Orientation Controllable Epitaxial Vapor-Liquid-Solid Semiconductor Nanowire Synthesis On Silicon Substrate, Sung Hwan Chung Jan 2013

Orientation Controllable Epitaxial Vapor-Liquid-Solid Semiconductor Nanowire Synthesis On Silicon Substrate, Sung Hwan Chung

Open Access Dissertations

Semiconductor nanowires synthesized via the vapor-liquid-solid (VLS) mechanism have attracted extensive research interest in recent years owing to their unique structure as a promising candidate for the future electronic devices. Germanium and silicon nanowires, in particular, are compatible with the current silicon-based technology via direct assembly. However, one of the main challenges for the successful nanowire application in large-scale is the lack of the method for obtaining nanowires in desired positions and directions. Therefore, the comprehensive, systematic understanding of epitaxial nanowire growth and the more suitable method to align nanowires on novel structure are required. In this work, the synthesis …


Droplet Assisted Self-Assembly Of Semiconductor Nanostructures, Kimberly Annosha Sablon May 2009

Droplet Assisted Self-Assembly Of Semiconductor Nanostructures, Kimberly Annosha Sablon

Graduate Theses and Dissertations

There is increasing interest in quantum dot (QD) structures for a plethora of applications, including optoelectronic devices, quantum computing and energy harvesting. While strain driven surface diffusion via stranski-krastanow (SK) method has been commonly used to fabricate these structures, a more recent technique, droplet epitaxy (DE) does not require mismatch strain and is therefore much more flexible in the combination of materials utilized for the formation of QDs.

As reported in this work, a hybrid approach that combines DE and SK techniques for realizing lateral ordering of QDs was explored. First, the droplet formation of various materials was discussed and …