Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering Science and Materials

Atomistic Simulation Study Of Nickel Solute Segregation And Mechanical Behavior In Nanocrystalline Fcc, Bcc And Hcp Binary Alloys, Eve-Audrey Picard Jan 2021

Atomistic Simulation Study Of Nickel Solute Segregation And Mechanical Behavior In Nanocrystalline Fcc, Bcc And Hcp Binary Alloys, Eve-Audrey Picard

Graduate College Dissertations and Theses

Nanocrystalline metals and alloys have been proven to possess unprecedentedly higher tensile strength than coarse-grained conventional metals. The extreme grain refinement in nanocrystalline metals, however, negatively affects these materials by reducing their ductility through grain-boundary embrittlement and shear localization mechanisms that are promoted by segregation of solute atoms to the interfaces. Different segregation behaviors described in the literature can be divided into either heterogeneous or homogeneous types. Yet current understanding of the impact of solute atom arrangements within grain boundary networks on mechanical properties of cubic and hexagonal nanocrystals remains limited. In this thesis, hybrid Monte-Carlo and molecular dynamics simulations …


Quantum Simulations Of Low Dimensional Systems And Analytic Continuation Of Imaginary Time Correlation Functions, Nathan Scott Nichols Jan 2021

Quantum Simulations Of Low Dimensional Systems And Analytic Continuation Of Imaginary Time Correlation Functions, Nathan Scott Nichols

Graduate College Dissertations and Theses

For over thirty years, a long standing problem in quantum many-body physics has been to reliably extract dynamical information from imaginary time quantum Monte Carlo data. I report on a new method developed using modern evolutionary computation routines to approach this notoriously ill-posed problem. Motivation towards a solution will be presented as a brief summary of work on quantum simulations of low dimensional systems including helium on strained graphene and helium confined within rare gas plated mesoporous silica. The Differential Evolution for Analytic Continuation (DEAC) algorithm reconstructs the dynamic structure factor from imaginary time density-density correlations at zero and finite …


Transient Effects In Solution-Processed Organic Thin Films, Jing Wan Jan 2021

Transient Effects In Solution-Processed Organic Thin Films, Jing Wan

Graduate College Dissertations and Theses

Due to the weak van der Waals forces between organic semiconductor molecules, the molecular packing depends sensitively on the processing methods and conditions. Thus, understanding the crystallization mechanisms during solution deposition are essential for fundamental studies and reproducible fabrication of electronic devices.The performance of Organic field effect transistors (OFETs) also depends heavily on extrinsic factors such as contact resistance and interfacial defects, which can produce a different kind of transient effect at the metal-semiconductor contact. We have observed structural transient effects during the crystallization process of two small molecule organic semiconductors made from solution. We report in situ X-ray scattering …


Nonlinear Impedance Spectroscopy To Characterize Hole Transport And Recombination Dynamics In Organic Semiconductor Devices, Robin Rice Jan 2021

Nonlinear Impedance Spectroscopy To Characterize Hole Transport And Recombination Dynamics In Organic Semiconductor Devices, Robin Rice

Graduate College Dissertations and Theses

Impedance Spectroscopy (IS) is an increasingly common technique to characterize both solid state and electrochemical systems including solar cells and light emitting diodes (LEDs). However, IS relies on a system response being linear with its input such that a time invariant impedance can be defined. This is usually achieved by a small amplitude input. However, doing so suppresses responses of the nonlinear processes which are of considerable interest to those designing and optimizing these devices, such as charge carrier recombination and space charge effects. This investigation employs the recently developed nonlinear extension to IS (NLIS) based in Fourier analysis of …


Strengthening Mechanisms In Nanocrystalline Silver-Nickel Nanolayered Materials, Malcolm Ryan Pringle Jan 2021

Strengthening Mechanisms In Nanocrystalline Silver-Nickel Nanolayered Materials, Malcolm Ryan Pringle

Graduate College Dissertations and Theses

Among all metals, silver has the highest electrical conductivity but also is one of the softest materials under mechanical deformation. Therefore, developing means and methods for strengthening silver without reducing conductivity is critically important for its use as a conductive electrode material in various engineering applications such as solar cells and touchscreen displays. This thesis presents a molecular-dynamics simulation study of strengthening mechanisms by intercalating nanocrystalline silver films with amorphous nickel layers, characterizing the structure of nanolayered material prototypes obtained by sputtering deposition technique. The objectives of the thesis are three-fold: To study the effects of Ni layer thickness and …