Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 81

Full-Text Articles in Engineering Science and Materials

Internal Damage Detection And Assessment In Beams Using Experimental Natural Frequencies, Frances K. Durham Jun 2005

Internal Damage Detection And Assessment In Beams Using Experimental Natural Frequencies, Frances K. Durham

Theses and Dissertations

This study investigated the frequency response of a cantilever beam with the intent of establishing a reliable nondestructive method of damage detection. The test specimens were 12 aluminum 2024 T3 beams, each identical except for a unique, eccentrically located notch, and one reference notchless beam. The machined notches varied in length and location to simulate varying degrees of damage. Laser doppler vibrometry enabled the data acquisition. The changes in natural frequencies were correlated to notch length and notch location. A comparison of eccentric and centered notch influence on the natural frequencies also is discussed.


An Investigation Of A Simplified Gouging Model, Gregory S. Rickerd Mar 2005

An Investigation Of A Simplified Gouging Model, Gregory S. Rickerd

Theses and Dissertations

Gouging is a type of structural failure that becomes important when two metals slide against each other at velocities in the range of 1.5 kilometers per second. A computer model has previously been used to model the development of gouging at the Holloman High Speed Test Track. This model has not been experimentally verified to be correct, due to the complexity of the model. This research develops a simplified model that can be experimentally verified. The computer program utilized in this research was studied to determine the most appropriate options to use in simulations. This was accomplished by modeling a …


Fatigue Behavior Of A Functionally-Graded Titanium Matrix Composite, Scott R. Cunningham Mar 2005

Fatigue Behavior Of A Functionally-Graded Titanium Matrix Composite, Scott R. Cunningham

Theses and Dissertations

Functionally-graded Titanium Matrix Composites are an attempt to utilize the high-strength properties of a titanium matrix composite with a monolithic alloy having the more practical machining qualities. This work studied the mechanical characteristics of the joint region as a first step toward future evaluation of this material. The scope of this effort involved testing under monotonic tension and fatigue loading conditions. Mechanical properties and cyclic behavior were evaluated for the joint area and then compared to those of the parent materials. The results of this study found that the strength of the transition region was slightly higher than the unreinforced …


Tensile Stress Rupture Behavior Of A Woven Ceramic Matrix Composite In Humid Environments At Intermediate Temperature, Kevin J. Larochelle Mar 2005

Tensile Stress Rupture Behavior Of A Woven Ceramic Matrix Composite In Humid Environments At Intermediate Temperature, Kevin J. Larochelle

Theses and Dissertations

Stress rupture tests on the SylramicTM fiber with an in-situ layer of boron nitride, boron nitride interphase, and SiC matrix ceramic matrix composite were performed at 550°C and 750°C with 0.0, 0.2, or 0.6 atm partial pressure of water vapor, pH2O. The 550°C, 100-hr strengths were 75%, 65% and 51% of the monotonic room temperature tensile strength, respectively. At 750°C, the strengths were 67%, 51%, and 49%, respectively. Field Emission Scanning Electron Microscopy analysis estimated the total embrittlement times for 550°C with 0.0, 0.2, and 0.6 atm pH2O were >63 hrs, >38 hrs, and between …


Analysis Of Computational Methods For The Treatment Of Material Interfaces, Minh C. Nguyen Mar 2005

Analysis Of Computational Methods For The Treatment Of Material Interfaces, Minh C. Nguyen

Theses and Dissertations

Rocket sled tests at the Air Force Research Laboratory's Holloman High Speed Test Track frequently approach velocities where gouging development becomes the limiting factor to achieving higher operating velocities. Direct observation of the gouging process is not possible so computational modeling is necessary to study the phenomenon. Since gouging development is dependent on the impact surface conditions, the method used to model material interfaces directly affects the accuracy of the solution. Three methods are available in the hydrocode CTH to handle material interfaces: 1) materials are joined at the interface, 2) a frictionless slide line is inserted, and 3) a …


Role Of Plasticity On Fretting Fatigue Behavior Of Ti-6al-4v, Kisu Shin Sep 2004

Role Of Plasticity On Fretting Fatigue Behavior Of Ti-6al-4v, Kisu Shin

Theses and Dissertations

Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few studies have focused on fretting fatigue behavior under elastic-plastic deformation conditions. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. In order to calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA …


Analytical Results For A Single-Unit System Subject To Markovian Wear And Shocks, Daniel E. Finkelstein Mar 2004

Analytical Results For A Single-Unit System Subject To Markovian Wear And Shocks, Daniel E. Finkelstein

Theses and Dissertations

This thesis develops and analyzers a mathematical model for the reliability measures of a single-unit system subject to continuous wear due to its operating environment and randomly occurring shocks that inflict a random amount of damage to the unit. Assuming a Markovian operating environment and shock arrival mechanism, Laplace-Stieltjes transform expressions are obtained for the failure time distribution and all of its moments. Moreover, an analytical expression is derived for the long-run availability of the single-unit system when it is subject to an inspect-and-replace maintenance policy. The analytical results are illustrated, and their results compared with those of Monte Carlo-simulated …


An Electromagnetic Tool For Damping And Fatigue Analysis, Todd M. Hoover Mar 2004

An Electromagnetic Tool For Damping And Fatigue Analysis, Todd M. Hoover

Theses and Dissertations

An automated test system was developed by the USAF Turbine Engine Fatigue Facility (TEFF). This system was initially designed to reduce the time and manpower required to characterize damping treatments. It is based on a digitally controlled environmental chamber with automated data acquisition and processing. Several outputs are available including identification of natural frequencies, modal damping ratios from the acquired frequency responses, and changes in damping with response amplitude; however, the TEFF additionally desires the capability to study fatigue under a free boundary condition. The system consists of a test specimen suspended by a pendulum to closely simulate free boundary …


Effect Of A Variable Contact Load On Fretting Fatigue Behavior Of Ti-6al-4v, Andrew J. Jutte Mar 2004

Effect Of A Variable Contact Load On Fretting Fatigue Behavior Of Ti-6al-4v, Andrew J. Jutte

Theses and Dissertations

Effects of a variable contact load on the high cycle fretting fatigue behavior of Ti-6AL-4V were investigated. Experimental tests were performed using a new test setup capable of applying a contact load varying in amplitude, frequency, and phase and independently measuring shear forces on opposite sides of a specimen. Finite element analysis (FEA) of experimental and idealized loading conditions was performed and local mechanistic parameters and the Modified Shear Stress Range (MSSR) fatigue parameter were determined. Correlations between contact width, slip amplitude, fatigue life and a variable contact load were established with variable contact loading shown to have a damaging …


Optimization Process For Configuration Of Flexible Joined-Wing, Cody C. Rasmussen Mar 2004

Optimization Process For Configuration Of Flexible Joined-Wing, Cody C. Rasmussen

Theses and Dissertations

This study established a weight optimized configuration design of a joined-wing sensor-craft. The joined-wing aircraft concept fulfills a proposed long-endurance surveillance mission that contains an antenna structure embedded in the wing skin. The analysis was completed utilizing structural optimization, aerodynamic analyses, and response surface methodology. A sample of 62 joined-wing configurations were weight optimized. Each optimized structure was determined through a change of skin, spar, and rib thickness in the wing box by determining trimmed maneuver and gust conditions for critical flight mission points. Since the joined-wing concept has non-linear deformation characteristics, the structural optimization used both strain and buckling …


The Evaluation Of The Damping Characteristics Of A Hard Coating On Titanium, Christopher M. Blackwell Mar 2004

The Evaluation Of The Damping Characteristics Of A Hard Coating On Titanium, Christopher M. Blackwell

Theses and Dissertations

Engine failures due to fatigue have cost the Air Force an estimated $400 million dollars per year over the past two decades (Garrison, 2001). Damping treatments capable of reducing the internal stresses of fan and turbine blades to levels where fatigue is less likely to occur have the potential for reducing cost while enhancing reliability. This research evaluates the damping characteristics of magnesium aluminate spinel, MgO+Al2O3, (mag spinel) on titanium plates. The material and aspect ratio were chosen to approximate the low aspect ratio blades found in military gas turbine fans. The plates were tested with …


Experimental And Computational Failure Analysis Of Graphite/Bismaleimide Laminated Composite And Carbon Foam In Sandwich Construction, Troy C. Welker Mar 2003

Experimental And Computational Failure Analysis Of Graphite/Bismaleimide Laminated Composite And Carbon Foam In Sandwich Construction, Troy C. Welker

Theses and Dissertations

Sandwich beams consisting of a carbon foam core and graphite/bismaleimide face sheets were constructed and tested. Nine specimens were fabricated using three distinct cross-ply symmetric face sheet layups with a constant core thickness. Four-point bend testing controlled by a constant rate of midspan vertical displacement was used to load the specimens to failure. Displacements and strains from the experiment were compared to analytical sandwich beam theory and displacements and failure loads were compared to a layerwise finite element solution. A phenomenological failure criterion was developed that compares favorably with experimental failure data. The finite element solution gives failure within an …


Stress Analysis Of Silicon Carbide Microeletromechanical Systems Using Raman Spectroscopy, Stanley J. Ness Mar 2003

Stress Analysis Of Silicon Carbide Microeletromechanical Systems Using Raman Spectroscopy, Stanley J. Ness

Theses and Dissertations

During the fabrication of Micro-Electro-Mechanical Systems (MEMS), residual stress is often induced in the thin films that are deposited to create these systems. These stresses can cause the device to fail due to buckling, curling, or fracture. Government and industry are looking for ways to characterize the stress during the deposition of thin films in order to reduce or eliminate device failure. Micro-Raman spectroscopy has been successfully used to analyze poly-silicon MEMS devices made with the Multi-User MEMS Process (MUMPS trade name). Micro-Raman spectroscopy was selected because it is nondestructive, fast and has the potential for in situ stress monitoring. …


Reduction Of Thermal Residual Strains In Adhesively Bonded Composite Repairs, Heather R. Crooks Mar 2003

Reduction Of Thermal Residual Strains In Adhesively Bonded Composite Repairs, Heather R. Crooks

Theses and Dissertations

Many military and commercial aircraft are being called upon to fly well beyond their original intended service lives. This has forced the United States Air Force (USAF) to increasingly rely on structural repairs to address fatigue induced damage and to extend aircraft useful life. The focus of this research is the use of a high-strength composite patch technique to repair a fatigue crack on an aluminum aircraft structure. This study investigates the thermal residual strains that occur as a direct result of the coefficient of thermal expansion (CTE) mismatch between the repair patch and the underlying cracked metallic structure to …


The Effect Of A Hard Coating On The Damping And Fatigue Life Of Titanium, Frank T. Ivancic Mar 2003

The Effect Of A Hard Coating On The Damping And Fatigue Life Of Titanium, Frank T. Ivancic

Theses and Dissertations

This project compares the damping and fatigue life of bare titanium plates to those coated with magnesium aluminate spinel (mag spinel). Two different coating thicknesses were tested: .005" per side and .010" per side (total thicknesses of .010" and .020"). Dynamic ping tests were conducted on all specimens to determine their resonance frequencies. Laser vibrometry was used to determine the mode at each resonance frequency. Damping ratios were determined through the use of sine sweeps. A vibration mode was selected at which to fatigue the specimens, and the stress pattern was analyzed utilizing the Stress Pattern Analysis by Thermal Emissions …


Effects Of Shot-Peening On High Cycle Fretting Fatigue Behavior Of Ti-6al-4v, Halil I. Yuksel Mar 2002

Effects Of Shot-Peening On High Cycle Fretting Fatigue Behavior Of Ti-6al-4v, Halil I. Yuksel

Theses and Dissertations

Effects of Shot-peening on High Cycle Fretting Fatigue behavior of Ti-6Al-4V were investigated. Experiments were performed with 6.35 mm thick specimens which provided S/N curves. After the tests, it was observed that the specimens failed near the trailing edge of contact. Scanning Electron Microscopy showed that cracks initiated on the contact surface for 6.35 mm, and at the depth of specimen ranging from 200 to 300 microns for 3.81 mm thick specimens. Initial crack orientation was around 37 and 42 degrees respectively for 6.35 and 3.81 mm thicknesses. Finite Element Analysis (FEA) was conducted, and using FEA results, Smith-Watson-Topper, Findley, …


Examination Of Contact Width On Fretting Fatigue, Russell S. Magaziner Mar 2002

Examination Of Contact Width On Fretting Fatigue, Russell S. Magaziner

Theses and Dissertations

The primary goal of this study was to find the effects on the fretting fatigue life when systematically holding the fretting fatigue variables, peak contact pressure, maximum/minimum nominal bulk stress, and the ratio of shear traction to pressure force constant while varying the contact semi-width through changes in pad radius and normal load. Experimental tests were performed on a test setup capable of independent pad displacement. Analytical and finite element simulations of the different experimental tests were performed. The local mechanistic parameters were inspected. Five different critical plane based fatigue predictive parameters lacked effectiveness in predicting changes in life with …


The Development Of A Finite Element Program To Model High Cycle Fatigue In Isotropic Plates, William C. Shipman Mar 2001

The Development Of A Finite Element Program To Model High Cycle Fatigue In Isotropic Plates, William C. Shipman

Theses and Dissertations

As part of a joint AFRL/DAGSI turbine blade research effort, a computer program has been developed that uses a von Karman large-deflection two-dimensional finite element approximation to determine stress levels and patterns in isotropic thin plates. The dynamic loading of various plates has been carried out in order to model a high cycle fatigue situation. The research considered the various effects of mode shapes, resident frequency, non-linear cyclic effect, endurance limits, and stress variations within a high cycle fatigue environment. Two main initiatives were taken. First, a transient analysis tool was developed that calculates stress and displacement patterns over a …


Modification Of Position And Attitude Determination Of A Test Article Through Photogrammetry To Account For Structural Deformation, Sean A. Krolikowski Mar 2001

Modification Of Position And Attitude Determination Of A Test Article Through Photogrammetry To Account For Structural Deformation, Sean A. Krolikowski

Theses and Dissertations

This study improved the current method of position and attitude determination to account for structural deformation of the wind tunnel test article due to aerodynamic loading. To account for deformation, parabolic bending and linear twisting coefficients were added into the Levenberg-Marquardt multi-parameter solver. By accounting for deformation, the accuracy of position and attitude determination was greatly improved. This study also takes a qualitative look at the optimum number of wind tunnel cameras and model targets. Optimal configuration was found to be around 50 targets and 2 cameras offset by 90 degrees.


Fatigue Response Of Thin Stiffened Aluminum Cracked Panels Repaired With Bonded Composite Patches, Jason B. Avram Mar 2001

Fatigue Response Of Thin Stiffened Aluminum Cracked Panels Repaired With Bonded Composite Patches, Jason B. Avram

Theses and Dissertations

This research investigated the fatigue response of precracked and patched 2024-T3 Aluminum panels with stiffeners. Patches were single-sided, unidirectional three ply boron/epoxy. Stiffeners were 2024-T3 aluminum and were riveted and bonded on. Disbonds were introduced into the repair bondline by inserting teflon strips. Three disbond configurations were investigated rack tip disbond (CTD) located at the edge of the patch in the path of crack propagation, full-width disbond (FWD) covering the entire crack, and end disbond (ED) located at each end of the patch and covering the full width. Each repaired panel was subjected to tension/tension cyclic fatigue with a maximum …


Computational Investigation Of Aeromechanical Hcf Effects In A Compressor Rotor, Andrew L. White Mar 2001

Computational Investigation Of Aeromechanical Hcf Effects In A Compressor Rotor, Andrew L. White

Theses and Dissertations

High-Cycle Fatigue is a major problem facing the gas turbine industry today. It has been investigated by many researchers, using many different methods. Due to its highly complex nature, designers still do not have adequate tools to accurately predict the onset of high-cycle fatigue. A three-dimensional Navier-Stokes program was used to perform a study of the unsteady aerodynamics on a compressor rotor. The effect of aerodynamic detuning on the forced response of a rotor blade was compared to a baseline tuned rotor case. Detuning consisted of a ten percent decrease in circumferential spacing between alternate pairs of blades. The high-cycle …


Mechanics Of A Functionally-Graded Titanium Matrix Composite, G. Brandt Miller Mar 2000

Mechanics Of A Functionally-Graded Titanium Matrix Composite, G. Brandt Miller

Theses and Dissertations

Functionally-graded Titanium Matrix Composites, (F/G TMCs) combine the ideal properties of titanium matrix composites with the more practical machining qualities of monolithic (unreinforced) alloy. This material shows great promise in application to aerospace structural components - even in parts whose design requirements have defied the use of composite materials in the past. Successful implementation of such a material would lead to enhanced aircraft performance. However, the basic properties of a functionally-graded titanium matrix composite need to be investigated. The composite/alloy transition region, or joint area, may be less strong than its constituents and therefore determine the overall performance of the …


Finite Element Analysis Of A Composite Cylindrical Shell With A Cutout Under A Fatigue Load, Joshua T. Boatwright Mar 2000

Finite Element Analysis Of A Composite Cylindrical Shell With A Cutout Under A Fatigue Load, Joshua T. Boatwright

Theses and Dissertations

A higher-order shell theory is used to analyze compressive and tensile loads on a graphite/epoxy laminated cylinder containing a square cutout. The Hashin failure criterion is used to determine failure in the fiber, matrix, or lamination. Once failure occurs, the appropriate stiffness terms are reduced. This failure causes a redistribution of stress, leading to further failure. In order to account for the loss of residual strength due to cyclic loading, the stiffness matrix is further reduced at each new increment of load or displacement. The objective is not to determine the S-N curve for the material, but rather to determine …


Monotonic And Fatigue Behavior Of 2-D Woven Ceramic Matrix Composite At Room And Elevated Temperatures (Blackglas/Nextel 312), Musa Al-Hussein Sep 1998

Monotonic And Fatigue Behavior Of 2-D Woven Ceramic Matrix Composite At Room And Elevated Temperatures (Blackglas/Nextel 312), Musa Al-Hussein

Theses and Dissertations

This study investigated the monotonic tension and compression and the tension-tension and tension-compression fatigue loading of Blackglas/Nextel 312 woven CMC at room temperature and at 760 degrees centigrade. Young's Modulus and strain variation were evaluated. S-N curves were obtained for room and elevated temperatures. The ultimate tensile stress was lower at the elevated temperature and it was higher in the compression test. Failure-strain was higher at the elevated temperature in both tension and compression tests. There was no significant change in Young's Modulus at the elevated temperature. Also, there was no difference in the number of cycles to failure at …


Fatigue Behavior Of A Quasi-Isotropic Graphite/Epoxy Laminate Embedded With A Piezoelectric Sensor, Jon M. Coleman Dec 1997

Fatigue Behavior Of A Quasi-Isotropic Graphite/Epoxy Laminate Embedded With A Piezoelectric Sensor, Jon M. Coleman

Theses and Dissertations

This study primarily investigated the mechanical effects of embedding piezoelectric sensors on the tensile and fatigue strength of a quasi-isotropic, carbon-epoxy laminate. A secondary focus was the investigation of the sensor degradation under tensile loading. A [0 | ±45 | 90]s laminate was fabricated from Hercules AS4/3501-6 pre-preg tape. Specimens were first tested monotonically to obtain an average ultimate tensile strength and to detail the progression of damage. The fatigue tests were tension-tension, R=0.1, 10 Hz, constant amplitude. Results indicated that the embedded piezoelectric sensors did not have a significant effect on the tensile strength of the laminate. Specimens …


Fiber Volume Fraction Effects On Fatigue Response Of A Scs-6/Ti-15-3 Metal Matrix Composite At Elevated Temperature, Sean C. Coghlan Sep 1997

Fiber Volume Fraction Effects On Fatigue Response Of A Scs-6/Ti-15-3 Metal Matrix Composite At Elevated Temperature, Sean C. Coghlan

Theses and Dissertations

The purpose of this study was to determine the effects of fiber volume fraction on the fatigue behavior of Silicon Carbide fiber-reinforced Titanium alloy, SCS-6/Ti-15-3. Three fiber volume fractions were investigated; 15%, 25%, and 42%. The tests were performed under fully-reversed, strain-controlled conditions at 427 °C. The primary objectives of this study were to develop a fatigue life diagram and to document the damage and failure mechanisms. Compressive loads on the slender specimens were kept from buckling the specimens through the use of a buckling guide. This device allows unrestricted axial movement of the composite, while preventing any out-of-plane motion. …


Thickness Effects On A Cracked Aluminum Plate With Composite Patch Repair, Joel J. Schubbe Jun 1997

Thickness Effects On A Cracked Aluminum Plate With Composite Patch Repair, Joel J. Schubbe

Theses and Dissertations

Post-repair fatigue crack growth was investigated in 3.175, 4.826, and 6.35 mm thick aluminum panels asymmetrically repaired with boron/epoxy composite patches bonded to the plates with FM73 sheet adhesive. Patches were uniaxial with patch to panel stiffness ratios ranging from 0.46 to 1.3. Experimental fatigue tests were carried out at 120 MPa, R=0.1, and 10 Hz (sinusoidal) to measure patched and unpatched face crack lengths, center crack opening displacements, and selected strains. Crack growth data was acquired using optical, eddy current, and post-test analysis methods. Crack growth rates were calculated using the incremental polynomial method. A three-layer Mindlin plate finite …


Residual Strength After Fatigue Of Unidirectional And Cross-Ply Metal Matrix Composites At Elevated Temperature, Sen-Tzer Chiou Jun 1996

Residual Strength After Fatigue Of Unidirectional And Cross-Ply Metal Matrix Composites At Elevated Temperature, Sen-Tzer Chiou

Theses and Dissertations

This study investigated the residual strength of the unidirectional and cross-ply laminates of SCS-6 / Ti-15-3, metal matrix composite at elevated temperature 427°C (800°F) after under tension-tension load controlled mode. For this purpose, several specimens were fatigued to various fractions of the fatigue life and then loaded monotonically to failure. The purpose of this study was to determine the effects of different levels of fatigue damage on the composite's strength. The unidirectional specimens were cycled at a 900 MPa maximum stress at a frequency of 10 Hz, while, the cross-ply specimens were tested at both 300 MPa and 450 MPa …


Modeling Of Progressive Damage In Fiber-Reinforced Ceramic Matrix Composites, James P. Solti Mar 1996

Modeling Of Progressive Damage In Fiber-Reinforced Ceramic Matrix Composites, James P. Solti

Theses and Dissertations

An analytic methodology is developed to model the response of fiber-reinforced ceramic matrix composites (CMOs) when subjected to monotonic and fatigue loadings. The analysis requires the formulation of (1) a micromechanics model which defines the laminate's geometry and constitutive relationship; (2) failure criteria which estimate the extent of microstructural damage, and, finally, (3) a means of analyzing frictional slip, fiber pull-out, interfacial wear and laminate failure. For the present study, the behavior of unidirectional and crossply CMOs is investigated using modified shear-lag theory in conjunction with a set of failure criteria with a minimum reliance on empirical data. The damage …


Fatigue Response Of Cracked Aluminum Panel With Partially Bonded Composite Patch, Jason J. Denney Dec 1995

Fatigue Response Of Cracked Aluminum Panel With Partially Bonded Composite Patch, Jason J. Denney

Theses and Dissertations

More and more aircraft, both commercial and military, are being called upon to fly well beyond their economic and structural service lives. Budget cuts and dwindling new aircraft development has forced the United States Air Force (USAF) to look toward more reliable structural repairs. One of these repair techniques, which was the subject of this study, is the repair of metallic aircraft structures using high strength composite materials. This study investigated the fatigue response of a precracked, 508x1 52x1 mm, 2024-T3 aluminum panel repaired with a partially bonded, unidirectional, three-ply boron/epoxy composite reinforcement with ply lengths of 68, 56 and …