Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering Science and Materials

Augmenting External Surface Pressures’ Predictions On Isolated Low-Rise Buildings Using Cfd Simulations, Md Faiaz Khaled, Aly Mousaad Aly Oct 2023

Augmenting External Surface Pressures’ Predictions On Isolated Low-Rise Buildings Using Cfd Simulations, Md Faiaz Khaled, Aly Mousaad Aly

Faculty Publications

The aim of this paper is to enhance the accuracy of predicting time-averaged external surface pressures on low-rise buildings by utilizing Computational Fluid Dynamics (CFD) simulations. To achieve this, benchmark studies of the Silsoe cube and the Texas Tech University (TTU) experimental building are employed for comparison with simulation results. The paper is structured into three main sections. In the initial part, an appropriate domain size is selected based on the precision of mean pressure coefficients on the windward face of the cube, utilizing Reynolds Averaged Navier-Stokes (RANS) turbulence models. Subsequently, recommendations regarding the optimal computational domain size for an …


Physics-Based Crystal Plasticity Model For Predicting Microstructure Evolution And Dislocation Densities, Juyoung Jeong Mar 2023

Physics-Based Crystal Plasticity Model For Predicting Microstructure Evolution And Dislocation Densities, Juyoung Jeong

LSU Doctoral Dissertations

This work presents three different studies investigating plastic deformation mechanisms in metals and alloys using crystal plasticity finite element (CPFE) modeling. The first study presents a new nonlocal crystal plasticity model for face-centered cubic single crystals under heterogeneous inelastic deformation. The model incorporates generalized constitutive relations that incorporate the thermally activated and drag mechanisms to cover different kinetics of viscoplastic flow in metals and describes the plastic flow and yielding of single-crystals using dislocation densities. The model is compared to micropillar compression experiments for copper single crystals and clarifies the complex microstructural evolution of dislocation densities in metals. The second …


An Improved Earned Value Management Method Integrating Quality And Safety, Brian Briggs Jul 2021

An Improved Earned Value Management Method Integrating Quality And Safety, Brian Briggs

LSU Doctoral Dissertations

The construction industry invests significant time and money to improve quality and safety while reducing cost and schedule impacts. The industry has a sincere desire to improve construction project management methods to improve efficiency. Historically, quality and safety underperformances result from undermanaged quality control and safety activities. The cost and schedule impacts associated with poor quality work have always had an impact on construction operations. The unprecedented challenges and uncertainties of COVID-19 highlighted the need to improve the Earned Value Management (EVM) method within construction to reflect these quality and safety activities. The central goal of this dissertation is to …


Simplified Approach For Structural Evaluation Of Flexible Pavements At The Network Level, Mena Souliman, Stefan Romanoschi, Samer Dessouky Dec 2018

Simplified Approach For Structural Evaluation Of Flexible Pavements At The Network Level, Mena Souliman, Stefan Romanoschi, Samer Dessouky

Publications

Currently, there are few available simple procedures to identify structurally weak pavement sections utilizing Falling Weight Deflectometer (FWD) data at the network level (e.g., city, state or province). A simple method is required to determine the structural condition of pavement sections that can be directly implemented and automated in current pavement databases. The objective of this research study is to develop a simple analysis method to determine the structural condition of pavement sections utilizing the currently available non-destructive testing (NDT) deflection measurement devices at the network level that can be directly implemented and automated in the database of a typical …


Modeling Sulfate Attack In Modern Concrete For Building Sustainable And Resilient Infrastructure, Zachary Grasley Oct 2018

Modeling Sulfate Attack In Modern Concrete For Building Sustainable And Resilient Infrastructure, Zachary Grasley

Publications

External sulfate attack is a complex phenomenon and is manifested in the form of large expansion, cracking, and spalling depending on the exposure solution and material constituent properties. Several models were developed in the past to demonstrate sulfate attack mechanisms that account for the diffusion of sulfate ions into the porous concrete and the successive deformation triggered by the chemical reaction and precipitation of expansive agents. However, none of these models accounts for the effect of the migration of solvent water from the low solute concentration solution to high solute concentration solution driven by the osmotic pressure. Osmotic pressure is …


Development Of Self-Healing Mechanisms For Asphalt Pavements, Max Abelardo Aguirre Deras Aug 2018

Development Of Self-Healing Mechanisms For Asphalt Pavements, Max Abelardo Aguirre Deras

LSU Doctoral Dissertations

Self-healing mechanisms, such as microcapsules or hollow-fibers, filled with an asphalt rejuvenator present an emerging technology that would enhance an asphalt mixture’s resistance to cracking damage caused by vehicular and environmental loading. The objectives of this study were to: (a) Evaluate the effects of asphalt rejuvenators on hot-mix asphalt mixtures in order to test its effects on the fundamental engineering properties of the mixtures at high and intermediate temperatures; (b) Develop a synthesis procedure for production of microcapsules and hollow-fibers containing an asphalt rejuvenator; (c) Evaluate the self-healing efficiency of double-walled microcapsules and hollow-fibers filled with an asphalt rejuvenator, through …


A Coupled Thermo-Mechanical Theory Of Strain Gradient Plasticity For Small And Finite Deformations, Yooseob Song Jun 2018

A Coupled Thermo-Mechanical Theory Of Strain Gradient Plasticity For Small And Finite Deformations, Yooseob Song

LSU Doctoral Dissertations

In this work, a thermodynamically consistent coupled thermo-mechanical gradient enhanced continuum plasticity theory is developed for small and finite deformations. The proposed model is conceptually based on the dislocations interaction mechanisms and thermal activation energy. The thermodynamic conjugate microstresses are decomposed into energetic and dissipative components. This work incorporates the thermal and mechanical responses of microsystems. It addresses phenomena such as size and boundary effects and in particular microscale heat transfer in fast-transient processes. Not only the partial heat dissipation caused by the fast transient time, but also the distribution of temperature caused by the transition from the plastic work …