Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

2013

Anode material

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Preparation And Electrochemical Properties Of Amorphous Znsno3/C By Hydrothermally Carbonization Method, Guo-Qing Fang, Rui-Xue Zhang, Wei-Wei Liu, Bing-Bo Xia, Hong-Dan Sun, Hai-Bo Wang, Jing-Jing Wu, Shinko Kaneko, De-Cheng Li Dec 2013

Preparation And Electrochemical Properties Of Amorphous Znsno3/C By Hydrothermally Carbonization Method, Guo-Qing Fang, Rui-Xue Zhang, Wei-Wei Liu, Bing-Bo Xia, Hong-Dan Sun, Hai-Bo Wang, Jing-Jing Wu, Shinko Kaneko, De-Cheng Li

Journal of Electrochemistry

The amorphous ZnSnO3@C composite was synthesized via a simple glucose hydrothermal and subsequent carbonization approach. The structure, morphology and electrochemical property of the composite were characterized by XRD, TEM and electrochemical measurements. Compared to bare ZnSnO3, the ZnSnO3/C composite exhibited markedly enhanced lithium storage property and cycle performance, delivering a reversible capacity of 659 mAh·g-1 after 100 cycles at a current density of 100 mA·g-1.


Hydrothermal Synthesis Of Pure Li4Ti5O12 And Its Electrochemical Performance, Wen-Jun Xie, Yu-Shi He, Hong Wang, Xiao-Zhen Liao, Zi-Feng Ma Apr 2013

Hydrothermal Synthesis Of Pure Li4Ti5O12 And Its Electrochemical Performance, Wen-Jun Xie, Yu-Shi He, Hong Wang, Xiao-Zhen Liao, Zi-Feng Ma

Journal of Electrochemistry

Spinel Li4Ti5O12 was prepared by hydrothermal method using commercial anatase (TiO2) and lithium hydroxide (LiOH) as raw materials. The effects of the LiOH concentration of lithium hydroxide, hydrothermal reaction time and calcination temperature on the structure and electrochemical performance of Li4Ti5O12 were investigated. The formation process of Li4Ti5O12 was also proposed. The micro-structure and morphology wereas characterized by XRD, SEM, TEM techniques, and the electrochemical performance was analyzed by galvanostatic charge-discharge test. The results show that the pure phase spinel Li4Ti5O12 can be …