Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Low voltage

Articles 1 - 3 of 3

Full-Text Articles in VLSI and Circuits, Embedded and Hardware Systems

A Low-Voltage Mos Cascode Current Mirror For All Current Levels, Bradley Minch Jul 2012

A Low-Voltage Mos Cascode Current Mirror For All Current Levels, Bradley Minch

Bradley Minch

In this paper, we describe a simple low-voltage MOS cascode current mirror that functions well at all current levels, ranging from weak inversion to strong inversion. The circuit features a wide output voltage swing and requires an input voltage of approximately one diode drop plus a saturation voltage. We present experimental results from a version of the current mirror that was fabricated in a 0.5 μm CMOS process along with a comparison with several other current mirrors with respect both to required input voltage and to output compliance voltage.


A Fully Programmable Log-Domain Bandpass Filter Using Multiple-Input Translinear Elements, Ravi Chawla, Haw-Jing Lo, Arindam Basu, Paul Hasler, Bradley Minch Jul 2012

A Fully Programmable Log-Domain Bandpass Filter Using Multiple-Input Translinear Elements, Ravi Chawla, Haw-Jing Lo, Arindam Basu, Paul Hasler, Bradley Minch

Bradley Minch

In this paper a second order log-domain bandpass filter using multiple input translinear elements (MITEs) operating at a 3V supply. We enhance the capabilities of the filter by utilizing programmable MITE structures as well as programmable current sources, which are covered in this paper. The synthesized bandpass filter is implemented and fabricated using these programmable translinear devices (MITEs). Experimental results are shown from circuit fabricated on a 0.5μm nwell CMOS process available through MOSIS.


Low Voltage And Performance Tunable Cmos Circuit Design Using Independently Driven Double Gate Mosfets, Arvind Kumar, Bradley Minch, Sandip Tiwari Jul 2012

Low Voltage And Performance Tunable Cmos Circuit Design Using Independently Driven Double Gate Mosfets, Arvind Kumar, Bradley Minch, Sandip Tiwari

Bradley Minch

Independently driven double-gate MOSFETs (DGFETs) facilitate design of analog circuits under digital logic constraints and provide in-circuit parameter adaptability through threshold voltage control. Threshold voltagetuning is achieved by biasing one of the two gates where as strong coupling of surface potentials at the two interfaces provides a low resistance feedback path. The geometry also allows a back-floating gate NVRAM structure with superior scalability and floating gate related analog applications without any read disturbance. This paper gives examples across breadth of circuits where this tunability is exploited.