Open Access. Powered by Scholars. Published by Universities.®

Signal Processing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Signal Processing

Improving Detection Of Dim Targets: Optimization Of A Moment-Based Detection Algorithm, Shannon R. Young Dec 2018

Improving Detection Of Dim Targets: Optimization Of A Moment-Based Detection Algorithm, Shannon R. Young

Theses and Dissertations

Wide area motion imagery (WAMI) sensor technology is advancing rapidly. Increases in frame rates and detector array sizes have led to a dramatic increase in the volume of data that can be acquired. Without a corresponding increase in analytical manpower, much of these data remain underutilized. This creates a need for fast, automated, and robust methods for detecting dim, moving signals of interest. Current approaches fall into two categories: detect-before-track (DBT) and track-before-detect (TBD) methods. The DBT methods use thresholding to reduce the quantity of data to be processed, making real time implementation practical but at the cost of the …


Non-Gnss Smartphone Pedestrian Navigation Using Barometric Elevation And Digital Map-Matching, Daniel Broyles, Kyle J. Kauffman, John F. Raquet, Piotr Smagowski Jul 2018

Non-Gnss Smartphone Pedestrian Navigation Using Barometric Elevation And Digital Map-Matching, Daniel Broyles, Kyle J. Kauffman, John F. Raquet, Piotr Smagowski

Faculty Publications

Pedestrian navigation in outdoor environments where global navigation satellite systems (GNSS) are unavailable is a challenging problem. Existing technologies that have attempted to address this problemoften require external reference signals or specialized hardware, the extra size,weight, power, and cost of which are unsuitable for many applications. This article presents a real-time, self-contained outdoor navigation application that uses only the existing sensors on a smartphone in conjunction with a preloaded digital elevation map. The core algorithm implements a particle filter, which fuses sensor data with a stochastic pedestrian motion model to predict the user’s position. The smartphone’s barometric elevation is then …


Improvements For Vision-Based Navigation Of Small, Fixed-Wing Unmanned Aerial Vehicles, Robert C. Leishman, Jeremy Gray, John F. Raquet, Adam Rutkowski Jul 2018

Improvements For Vision-Based Navigation Of Small, Fixed-Wing Unmanned Aerial Vehicles, Robert C. Leishman, Jeremy Gray, John F. Raquet, Adam Rutkowski

Faculty Publications

Investigating alternative navigation approaches for use when GPS signals are unavailable is an active area of research across the globe. In this paper we focus on the navigation of small, fixed-wing unmanned aerial vehicles (UAVs) that employ vision-based approaches combined with other measurements as a replacement for GPS. We demonstrate with flight test data that vehicle attitude information, derived from cheap, MEMS-based IMUs is sufficient to improve two different types of vision processing algorithms. Secondly, we show analytically and with flight test data that range measurements to one other vehicle with global pose is sufficient to constrain the global drift …


Mitigating Interference With Knowledge-Aided Subarray Pattern Synthesis And Space Time Adaptive Processing, Yongjun Yoon Jun 2018

Mitigating Interference With Knowledge-Aided Subarray Pattern Synthesis And Space Time Adaptive Processing, Yongjun Yoon

Theses and Dissertations

Phased arrays are essential to airborne ground moving target indication (GMTI), as they measure the spatial angle-of-arrival of the target, clutter, and interference signals. The spatial and Doppler (temporal) frequency is utilized by space-time adaptive processing (STAP) to separate and filter out the interference from the moving target returns. Achieving acceptable airborne GMTI performance often requires fairly large arrays, but the size, weight and power (SWAP) requirements, cost and complexity considerations often result in the use of subarrays. This yields an acceptable balance between cost and performance while lowering the system’s robustness to interference. This thesis proposes the use of …


Quantification Of The Impact Of Photon Distinguishability On Measurement-Device- Independent Quantum Key Distribution, Garrett K. Simon, Blake K. Huff, William M. Meier, Logan O. Mailloux, Lee E. Harrell Apr 2018

Quantification Of The Impact Of Photon Distinguishability On Measurement-Device- Independent Quantum Key Distribution, Garrett K. Simon, Blake K. Huff, William M. Meier, Logan O. Mailloux, Lee E. Harrell

Faculty Publications

Measurement-Device-Independent Quantum Key Distribution (MDI-QKD) is a two-photon protocol devised to eliminate eavesdropping attacks that interrogate or control the detector in realized quantum key distribution systems. In MDI-QKD, the measurements are carried out by an untrusted third party, and the measurement results are announced openly. Knowledge or control of the measurement results gives the third party no information about the secret key. Error-free implementation of the MDI-QKD protocol requires the crypto-communicating parties, Alice and Bob, to independently prepare and transmit single photons that are physically indistinguishable, with the possible exception of their polarization states. In this paper, we apply the …


Near Earth Space Object Detection Utilizing Parallax As Multi-Hypothesis Test Criterion, Joseph C. Tompkins Mar 2018

Near Earth Space Object Detection Utilizing Parallax As Multi-Hypothesis Test Criterion, Joseph C. Tompkins

Theses and Dissertations

The US Strategic Command (USSTRATCOM) operated Space Surveillance Network (SSN) is tasked with Space Situational Awareness (SSA) for the US military. This system is made up of Electro-Optic sensors such as the Space Surveillance Telescope (SST) and Ground-based Electro-Optical Deep Space Surveillance (GEODSS) as well as RADAR based sensors such as the Space Fence. While Lockheed Martin’s Space Fence is very adept at detecting & tracking objects in Low Earth Orbit (LEO) below 3000 Km in height [1], gaps remain in the tracking of Resident Space Objects (RSO’s) in Geosynchronous Orbits (GEO) due to limitations associated with the implementation of …


Radio Tomographic Imaging Using A Modified Maximum Likelihood Estimator For Image Reconstruction In Various Environments, Antwon R. Gallagher Mar 2018

Radio Tomographic Imaging Using A Modified Maximum Likelihood Estimator For Image Reconstruction In Various Environments, Antwon R. Gallagher

Theses and Dissertations

Radio Tomographic Imaging (RTI) is an emerging Device-Free Passive Localization (DFPL) technology. Radio Tomographic Imaging (RTI) involves using a set of small low cost wireless transceivers to create a Wireless Sensor Network (WSN) around an Area of Interest (AoI). Furthermore, the Received Signal Strength (RSS) between transceiver pairs is utilized to reconstruct an image from the signal attenuation caused by an object disrupting the links. This image can then be utilized for multiple applications ranging from localization to target detection and tracking. This enhances the importance of image resolution in order to capture the actual size of the objects as …


Mitigating The Effects Of Boom Occlusion On Automated Aerial Refueling Through Shadow Volumes, Zachary C. Paulson Mar 2018

Mitigating The Effects Of Boom Occlusion On Automated Aerial Refueling Through Shadow Volumes, Zachary C. Paulson

Theses and Dissertations

In flight refueling of Unmanned Aerial Vehicles (UAVs) is critical to the United States Air Force (USAF). However, the large communication latency between a ground-based operator and his/her remote UAV makes docking with a refueling tanker unsafe. This latency may be mitigated by leveraging a tanker-centric stereo vision system. The vision system observes and computes an approaching receiver's relative position and orientation offering a low-latency, high frequency docking solution. Unfortunately, the boom -- an articulated refueling arm responsible for physically pumping fuel into the receiver -- occludes large portions of the receiver especially as the receiver approaches and docks with …


Rss-Based Device-Free Passive Detection And Localization Using Home Automation Network Radio Frequencies, Tiffany M. Phan Mar 2018

Rss-Based Device-Free Passive Detection And Localization Using Home Automation Network Radio Frequencies, Tiffany M. Phan

Theses and Dissertations

This research provided a proof of concept for a device-free passive (DfP) system capable of detecting and localizing a target through exploitation of a home automation network’s radio frequency (RF) signals. The system was developed using Insteon devices with a 915 MHz center frequency. Without developer privileges, limitations of the Insteon technology like no intrinsic received signal strength (RSS) field and silent periods between messages were overcome by using software-defined radios to simulate Insteon devices capable of collecting and reporting RSS, and by creating a message generation script and implementing a calibrated filter threshold to reduce silent periods. Evaluation of …


Plasmonic Grating Geometrics And Wavelength-Dependent Focus Depth In Infrared Detectors, Patrick R. Kennedy Mar 2018

Plasmonic Grating Geometrics And Wavelength-Dependent Focus Depth In Infrared Detectors, Patrick R. Kennedy

Theses and Dissertations

The objective for this research is to determine a relationship between plasmonic grating geometries and the wavelength-dependent focus depth. This research is focused on enhancing the signal collected by infrared detectors by using a metal grating as a planar lens to focus light in the detecting region of the substrate. This can be used to maintain a thinner absorbing region and possibly to create multi-color imaging in a single pixel. Simulations demonstrate that the plasmonic lens is capable of creating a wavelength dependent focus spot.


Bandwidth Analysis Of A Tightly-Packed Crossed-Dipole Array For Satellite Communications, Lawrence J. Lee Mar 2018

Bandwidth Analysis Of A Tightly-Packed Crossed-Dipole Array For Satellite Communications, Lawrence J. Lee

Theses and Dissertations

A bandwidth analysis of a tightly-packed crossed-dipole array antenna is presented in this thesis. A parametric study is described which varies the element spacing in the array and the resulting change in the terminal impedances is reported. The increased mutual coupling seen by the elements as a result of smaller element spacings is shown to minimize the variation in the value of the elements terminal currents across a 0.3 GHz to 3.0 GHz frequency range. This small variation in current translates into a minimal variation in the terminal impedances for a fixed excitation voltage. This is shown to be an …