Open Access. Powered by Scholars. Published by Universities.®

Signal Processing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Signal Processing

Optimal Estimation Inversion Of Ionospheric Electron Density From Gnss-Pod Limb Measurements: Part I-Algorithm And Morphology, Dong L. Wu, Nimalan Swarnalingam, Cornelius Csar Jude H. Salina, Daniel J. Emmons, Tyler C. Summers, Robert Gardiner-Garden Jun 2023

Optimal Estimation Inversion Of Ionospheric Electron Density From Gnss-Pod Limb Measurements: Part I-Algorithm And Morphology, Dong L. Wu, Nimalan Swarnalingam, Cornelius Csar Jude H. Salina, Daniel J. Emmons, Tyler C. Summers, Robert Gardiner-Garden

Faculty Publications

GNSS-LEO radio links from Precise Orbital Determination (POD) and Radio Occultation (RO) antennas have been used increasingly in characterizing the global 3D distribution and variability of ionospheric electron density (Ne). In this study, we developed an optimal estimation (OE) method to retrieve Ne profiles from the slant total electron content (hTEC) measurements acquired by the GNSS-POD links at negative elevation angles (ε < 0°). Although both OE and onion-peeling (OP) methods use the Abel weighting function in the Ne inversion, they are significantly different in terms of performance in the lower ionosphere. The new OE results can overcome the large Ne oscillations, sometimes negative values, seen in the OP retrievals in the E-region ionosphere. In the companion paper in this Special Issue, the HmF2 and NmF2 from the OE retrieval are validated against ground-based ionosondes and radar observations, showing generally good agreements in NmF2 from all sites. Nighttime hmF2 measurements tend to agree better than the daytime when the ionosonde heights tend to be slightly lower. The OE algorithm has been applied to all GNSS-POD data acquired from the COSMIC-1 (2006–2019), COSMIC-2 (2019–present), and Spire (2019–present) constellations, showing a consistent ionospheric Ne morphology. The unprecedented spatiotemporal sampling of the ionosphere from these constellations now allows a detailed analysis of the frequency–wavenumber spectra for the Ne variability at different heights. In the lower ionosphere (~150 km), we found significant spectral power in DE1, DW6, DW4, SW5, and SE4 wave components, in addition to well-known DW1, SW2, and DE3 waves. In the upper ionosphere (~450 km), additional wave components are still present, including DE4, DW4, DW6, SE4, and SW4. The co-existence of eastward- and westward-propagating wave4 components implies the presence of a stationary wave4 (SPW4), as suggested by other earlier studies. Further improvements to the OE method are proposed, including a tomographic inversion technique that leverages the asymmetric sampling about the tangent point associated with GNSS-LEO links.


A Statistical Analysis Of Sporadic-E Characteristics Associated With Gnss Radio Occultation Phase And Amplitude Scintillations, Daniel J. Emmons, Dong L. Wu, Nimalan Swarnalingam Dec 2022

A Statistical Analysis Of Sporadic-E Characteristics Associated With Gnss Radio Occultation Phase And Amplitude Scintillations, Daniel J. Emmons, Dong L. Wu, Nimalan Swarnalingam

Faculty Publications

Statistical GNSS-RO measurements of phase and amplitude scintillation are analyzed at the mid-latitudes in the local summer for a 100 km altitude. These conditions are known to contain frequent sporadic-E, and the S4-σϕ trends provide insight into the statistical distributions of the sporadic-E parameters. Joint two-dimensional S4-σϕ histograms are presented, showing roughly linear trends until the S4 saturates near 0.8. To interpret the measurements and understand the sporadic-E contributions, 10,000 simulations of RO signals perturbed by sporadic-E layers are performed using length, intensity, and vertical thickness distributions from previous studies, with the assumption that the sporadic-E layer acts …


Long-Distance Propagation Of 162 Mhz Shipping Information Links Associated With Sporadic E, Alex T. Chartier, Thomas R. Hanley, Daniel J. Emmons Nov 2022

Long-Distance Propagation Of 162 Mhz Shipping Information Links Associated With Sporadic E, Alex T. Chartier, Thomas R. Hanley, Daniel J. Emmons

Faculty Publications

This is a study of anomalous long-distance (>1000 km) radio propagation that was identified in United States Coast Guard monitors of automatic identification system (AIS) shipping transmissions at 162 MHz. Our results indicate this long-distance propagation is caused by dense sporadic E layers in the daytime ionosphere, which were observed by nearby ionosondes at the same time. This finding is surprising because it indicates these sporadic E layers may be far more dense than previously thought.


Global Sporadic-E Climatological Analysis Using Gps Radio Occultation And Ionosonde Data, Travis J. Hodos Mar 2022

Global Sporadic-E Climatological Analysis Using Gps Radio Occultation And Ionosonde Data, Travis J. Hodos

Theses and Dissertations

A climatology of sporadic-E (Es) derived from a combined data set of GPS radio occultation (GPS-RO) and ground-based ionosonde soundings is presented for the period from September 2006 to February 2019. The ionosonde soundings were measured using the Lowell Digisonde International (LDI) Global Ionosphere Radio Observatory (GIRO) network consisting of 65 sites and 13,141,060 total soundings. The GPS-RO observations were taken aboard the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites and processed using two binary Es detection algorithms, totaling 9,072,922 occultations. The first algorithm is an S4 amplitude threshold calibrated to the occurrence of any blanketing Es …


Ionospheric F-Layer Dipole Flute Instability Effects On Electromagnetic Scattering In A Magnetohydrodynamic Plasma, Andrew J. Knisely Nov 2021

Ionospheric F-Layer Dipole Flute Instability Effects On Electromagnetic Scattering In A Magnetohydrodynamic Plasma, Andrew J. Knisely

Theses and Dissertations

The ionosphere has significant impact on radio frequency (RF) applications such as satellites, over-the-horizon radar, and commercial communication systems. The dynamic processes effecting the behavior of the ionic content leads to a variety of instabilities that adversely affect the quality of RF signals. In the F-layer ionosphere, flute instability persists, appearing as two radial regions of high and low density perturbations elongated along the earth's geomagnetic field lines. The sizes of flute structures are comparable to the wavelengths in the high frequency spectrum. The objective is to characterize the high frequency scattering of an incident field by developing a 3D …


Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola Apr 2020

Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola

Faculty Publications

Atmospheric compensation of long-wave infrared (LWIR) hyperspectral imagery is investigated in this article using set representations learned by a neural network. This approach relies on synthetic at-sensor radiance data derived from collected radiosondes and a diverse database of measured emissivity spectra sampled at a range of surface temperatures. The network loss function relies on LWIR radiative transfer equations to update model parameters. Atmospheric predictions are made on a set of diverse pixels extracted from the scene, without knowledge of blackbody pixels or pixel temperatures. The network architecture utilizes permutation-invariant layers to predict a set representation, similar to the work performed …


Simulation Of Sporadic-E Parameters Using Phase Screen Method, Daniel W. Stambovsky Mar 2020

Simulation Of Sporadic-E Parameters Using Phase Screen Method, Daniel W. Stambovsky

Theses and Dissertations

A phase screen simulation experiment is designed and implemented to model radio occultation through sporadic-E ionospheric disturbances between a GPS transmitter operating at the L1 frequency and a second receiving satellite in low earth orbit (LEO). Simulations were made to test the linear relationship between plasma intensity and scintillation S4 index both posited (Arras and Wickert, 2018) and contended (Gooch et al., 2020) in previous literature. Results brought into question both the linear relationship and the use of S4 as a whole and an alternate metric was sought.


Implementation Of Branch-Point-Tolerant Wavefront Reconstructor For Strong Turbulence Compensation, Michael J. Steinbock Jun 2012

Implementation Of Branch-Point-Tolerant Wavefront Reconstructor For Strong Turbulence Compensation, Michael J. Steinbock

Theses and Dissertations

Branch points arise in optical transmissions due to strong atmospheric turbulence, long propagation paths, or a combination of both. Unfortunately, these conditions are very often present in desired operational scenarios for laser weapon systems, optical communication, and covert imaging, which suffer greatly when traditional adaptive optics systems either cannot sense branch points or implement non-optimal methods for sensing and correcting branch points. Previous research by Pellizzari presented a thorough analysis of various novel branch point tolerant reconstructors in the absence of noise. In this research a realistic model of the Air Force Institute of Technology's adaptive optics system is developed …


Hyperspectral-Based Adaptive Matched Filter Detector Error As A Function Of Atmospheric Profile Estimation, Allan W. Yarbrough Sep 2011

Hyperspectral-Based Adaptive Matched Filter Detector Error As A Function Of Atmospheric Profile Estimation, Allan W. Yarbrough

Theses and Dissertations

Hyperspectral imagery is collected as radiance data. This data is a function of multiple variables: the radiation profile of the light source, the reflectance of the target, and the absorption and scattering profile of the medium through which the radiation travels as it reflects off the target and reaches the imager. Accurate target detection requires that the collected image matches as closely as possible the known "true" target in the classification database. Therefore, the effect of the radiation source and the atmosphere must be removed before detection is attempted. While the spectrum of solar light is relatively stable, the effect …


Determining The Index Of Refraction Of An Unknown Object Using Passive Polarimetric Imagery Degraded By Atmospheric Turbulence, Milo W. Hyde Iv Sep 2010

Determining The Index Of Refraction Of An Unknown Object Using Passive Polarimetric Imagery Degraded By Atmospheric Turbulence, Milo W. Hyde Iv

Theses and Dissertations

In this research, an algorithm is developed to estimate the index of refraction of an unknown object using passive polarimetric images degraded by atmospheric turbulence. The algorithm uses a variant of the maximum-likelihood blind-deconvolution algorithm developed by LeMaster and Cain to recover the true object (i.e., the first Stokes parameter), the degree of linear polarization, and the polarimetric-image point spread functions. Nonlinear least squares is then used to find the value of the complex index of refraction which best fits the theoretical degree of linear polarization, derived using a polarimetric bidirectional reflectance distribution function, to the turbulence-corrected degree of linear …


Assessment Of Optical Turbulence Profiles Derived From Probabilistic Climatology, Brett W. Wisdom Mar 2007

Assessment Of Optical Turbulence Profiles Derived From Probabilistic Climatology, Brett W. Wisdom

Theses and Dissertations

This research effort assesses the performance of the High Energy Laser End-to-End Operational Simulation (HELEEOS) Climatological C2n optical turbulence model. Path-integrated C2n values of two HELEEOS optical turbulence pro les at 3 distinct operational altitudes are compared to values determined from measured thermosonde data. HELEEOS desert and mid-latitude sites are selected from the Extreme and Percentile Environmental Reference Tables (ExPERT) database for comparison to the thermosonde data. Statistical equivalence of the two datasets is determined through a Design of Experiments (DOE) factorial test to within 80% confidence. The HELEEOS profiles are shown to be equivalent to …


Radiometric Analysis Of Daytime Satellite Detection, Katherine B. Lilevjen Mar 2006

Radiometric Analysis Of Daytime Satellite Detection, Katherine B. Lilevjen

Theses and Dissertations

A radiometric model for daylight satellite detection is developed and used to evaluate the effects of various parameters on signal-to-noise ratio (SNR). Detection of reflected sunlight from a low-earth orbit, diffuse, planar satellite by a single-pixel infrared photovoltaic detector is considered. Noise considered includes photon noise from the background and signal, as well as thermal noise. Parameters considered include atmospheric conditions, optical parameters, and detector parameters. The Phillips Laboratory Expert-assisted User System, an atmospheric modeling tool that employs the MODTRAN and FASCODE transmission codes, is used to model wavelength-dependent atmospheric transmission and background radiance. The SNR is found to increase …


A Climatological Study Of Equatorial Gps Data And The Effects On Ionospheric Scintillation, Katharine A. Wicker Mar 2006

A Climatological Study Of Equatorial Gps Data And The Effects On Ionospheric Scintillation, Katharine A. Wicker

Theses and Dissertations

Ionospheric scintillation is detrimental to radio signals, especially those from the global positioning system. Such scintillation is caused when a signal permeates the ionosphere through plasma bubbles. The signal’s phase and amplitude can be altered, and a receiver on the ground can lose lock on the GPS signal. Measured using a zero to one index known as S4, scintillation severity is based upon season, solar cycle, time of day, location and frequency. The most severe scintillation occurs at the equatorial anomaly, or fifteen degrees north and south of the equator. Seven years of data from fifteen different locations around the …


Analysis Of Multimode Low-Probability-Of-Intercept (Lpi) Communications With Atmospheric Effects, Ala Ghordlo Dec 1996

Analysis Of Multimode Low-Probability-Of-Intercept (Lpi) Communications With Atmospheric Effects, Ala Ghordlo

Theses and Dissertations

This research expanded Low Probability of Intercept (LPI) communications analysis in two areas. First, multimode communication was included to account for ground to ground and air to ground links in addition to the standard air to air links traditionally used in LPI analysis. The propagation equations for the three modes of interest were derived and included in LPI analytic models in the form of a mode quality factor to account for multimode LPI scenarios. This new quality factor was used in studying several communication and interception link combinations. Variations due to differences between the communication and interception modes were presented …


Performance Analysis Of A Hartman Wavefront Sensor Used For Sensing Atmospheric Turbulence Statistics, Toby D. Reeves Dec 1996

Performance Analysis Of A Hartman Wavefront Sensor Used For Sensing Atmospheric Turbulence Statistics, Toby D. Reeves

Theses and Dissertations

Atmospheric turbulence parameters, such as Fried's coherence diameter, the outer scale of turbulence, and the turbulence power law, are related to the wavefront slope structure function (SSF). The SSF is defined as the second moment of the wavefront slope difference as a function of both time and position. Knowledge of the SSF allows turbulence parameters to be estimated. Hartmann wavefront sensor (H-WFS) slope measurements composed of both signal and noise, allow the SSF to be estimated by computing a mean square difference of H-WFS slope measurements. The quality of the SSF estimate is quantified by the signal-to-noise ratio (SNR) of …


Investigation Of Radio Wave Propagation In The Martian Ionosphere Utilizing Hf Sounding Techniques, Robert J. Yowell Jun 1996

Investigation Of Radio Wave Propagation In The Martian Ionosphere Utilizing Hf Sounding Techniques, Robert J. Yowell

Theses and Dissertations

This thesis presents a preliminary design of an ionospheric sounder to be carried aboard one or more of NASA's Mars Surveyor landers. Past Russian and American probes have indicated the existence of an ionosphere, but none of these missions remotely sensed this atmospheric layer from the surface. The rationale for utilizing a surface-based Martian ionospheric sounder is discussed. Based on NASA's choice of launch vehicle and power source, a low-weight, low-powered Chirp sounder using a horizontally-polarized dipole antenna is recommended for the sounder experiment. The sounder experiment should be conducted for at least one Martian year, in order to investigate …


The Role Of Frame Selection And Bispectrum Phase Reconstruction For Speckle Imaging Through Atmospheric Turbulence, Elizabeth A. Harpold Dec 1995

The Role Of Frame Selection And Bispectrum Phase Reconstruction For Speckle Imaging Through Atmospheric Turbulence, Elizabeth A. Harpold

Theses and Dissertations

Frame selection using quality sharpness metrics have been shown in previous AFIT theses, to be effective in improving the final product of images obtained using adaptive optics. This thesis extends this idea to noncompensated speckle image data. Speckle image reconstruction is simulated with and without frame selection. Speckle images require the processing of hundreds of data frames. Frame selection is a method of reducing the amount of data required to reconstruct the image. A collection of short exposure image data frames of a single object are sorted based on sharpness metrics. Only the highest quality frames are retained and processed …