Open Access. Powered by Scholars. Published by Universities.®

Signal Processing Commons

Open Access. Powered by Scholars. Published by Universities.®

Air Force Institute of Technology

Atmospheric Sciences

Ionosphere

Articles 1 - 4 of 4

Full-Text Articles in Signal Processing

Optimal Estimation Inversion Of Ionospheric Electron Density From Gnss-Pod Limb Measurements: Part I-Algorithm And Morphology, Dong L. Wu, Nimalan Swarnalingam, Cornelius Csar Jude H. Salina, Daniel J. Emmons, Tyler C. Summers, Robert Gardiner-Garden Jun 2023

Optimal Estimation Inversion Of Ionospheric Electron Density From Gnss-Pod Limb Measurements: Part I-Algorithm And Morphology, Dong L. Wu, Nimalan Swarnalingam, Cornelius Csar Jude H. Salina, Daniel J. Emmons, Tyler C. Summers, Robert Gardiner-Garden

Faculty Publications

GNSS-LEO radio links from Precise Orbital Determination (POD) and Radio Occultation (RO) antennas have been used increasingly in characterizing the global 3D distribution and variability of ionospheric electron density (Ne). In this study, we developed an optimal estimation (OE) method to retrieve Ne profiles from the slant total electron content (hTEC) measurements acquired by the GNSS-POD links at negative elevation angles (ε < 0°). Although both OE and onion-peeling (OP) methods use the Abel weighting function in the Ne inversion, they are significantly different in terms of performance in the lower ionosphere. The new OE results can overcome the large Ne oscillations, sometimes negative values, seen in the OP retrievals in the E-region ionosphere. In the companion paper in this Special Issue, the HmF2 and NmF2 from the OE retrieval are validated against ground-based ionosondes and radar observations, showing generally good agreements in NmF2 from all sites. Nighttime hmF2 measurements tend to agree better than the daytime when the ionosonde heights tend to be slightly lower. The OE algorithm has been applied to all GNSS-POD data acquired from the COSMIC-1 (2006–2019), COSMIC-2 (2019–present), and Spire (2019–present) constellations, showing a consistent ionospheric Ne morphology. The unprecedented spatiotemporal sampling of the ionosphere from these constellations now allows a detailed analysis of the frequency–wavenumber spectra for the Ne variability at different heights. In the lower ionosphere (~150 km), we found significant spectral power in DE1, DW6, DW4, SW5, and SE4 wave components, in addition to well-known DW1, SW2, and DE3 waves. In the upper ionosphere (~450 km), additional wave components are still present, including DE4, DW4, DW6, SE4, and SW4. The co-existence of eastward- and westward-propagating wave4 components implies the presence of a stationary wave4 (SPW4), as suggested by other earlier studies. Further improvements to the OE method are proposed, including a tomographic inversion technique that leverages the asymmetric sampling about the tangent point associated with GNSS-LEO links.


Long-Distance Propagation Of 162 Mhz Shipping Information Links Associated With Sporadic E, Alex T. Chartier, Thomas R. Hanley, Daniel J. Emmons Nov 2022

Long-Distance Propagation Of 162 Mhz Shipping Information Links Associated With Sporadic E, Alex T. Chartier, Thomas R. Hanley, Daniel J. Emmons

Faculty Publications

This is a study of anomalous long-distance (>1000 km) radio propagation that was identified in United States Coast Guard monitors of automatic identification system (AIS) shipping transmissions at 162 MHz. Our results indicate this long-distance propagation is caused by dense sporadic E layers in the daytime ionosphere, which were observed by nearby ionosondes at the same time. This finding is surprising because it indicates these sporadic E layers may be far more dense than previously thought.


Ionospheric F-Layer Dipole Flute Instability Effects On Electromagnetic Scattering In A Magnetohydrodynamic Plasma, Andrew J. Knisely Nov 2021

Ionospheric F-Layer Dipole Flute Instability Effects On Electromagnetic Scattering In A Magnetohydrodynamic Plasma, Andrew J. Knisely

Theses and Dissertations

The ionosphere has significant impact on radio frequency (RF) applications such as satellites, over-the-horizon radar, and commercial communication systems. The dynamic processes effecting the behavior of the ionic content leads to a variety of instabilities that adversely affect the quality of RF signals. In the F-layer ionosphere, flute instability persists, appearing as two radial regions of high and low density perturbations elongated along the earth's geomagnetic field lines. The sizes of flute structures are comparable to the wavelengths in the high frequency spectrum. The objective is to characterize the high frequency scattering of an incident field by developing a 3D …


A Climatological Study Of Equatorial Gps Data And The Effects On Ionospheric Scintillation, Katharine A. Wicker Mar 2006

A Climatological Study Of Equatorial Gps Data And The Effects On Ionospheric Scintillation, Katharine A. Wicker

Theses and Dissertations

Ionospheric scintillation is detrimental to radio signals, especially those from the global positioning system. Such scintillation is caused when a signal permeates the ionosphere through plasma bubbles. The signal’s phase and amplitude can be altered, and a receiver on the ground can lose lock on the GPS signal. Measured using a zero to one index known as S4, scintillation severity is based upon season, solar cycle, time of day, location and frequency. The most severe scintillation occurs at the equatorial anomaly, or fifteen degrees north and south of the equator. Seven years of data from fifteen different locations around the …