Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Science Behind The Magnetic Field Therapy, D. B. Thombre,, Megha D. Thombre Oct 2015

Science Behind The Magnetic Field Therapy, D. B. Thombre,, Megha D. Thombre

Innovative Research Publications IRP India

Magnetic therapy is the use of magnets to relieve pain in various areas of the body. It is the simplest, cheapest and entirely painless system of treatment with no side effects. In present article, discussion of fundamental aspect about the application of magnetic field (Natural and artificial) and how it apply to the human body with suggestions. Magnetic field is produce by magnet or electromagnetic generating devices are able to penetrate the human body because human body is magnetic hence magnetic field affect the functioning of human body. Suggestions are, High blood pressure person sleep with foots towards west and …


Mems Resonant Magnetic Field Sensor Based On An Aln/Fegab Bilayer Nano-Plate Resonator, Yu Hui, Tianxiang Nan, Nian Sun, Matteo Rinaldi Aug 2013

Mems Resonant Magnetic Field Sensor Based On An Aln/Fegab Bilayer Nano-Plate Resonator, Yu Hui, Tianxiang Nan, Nian Sun, Matteo Rinaldi

Nian X. Sun

This paper reports on the first demonstration of an ultra-miniaturized, high frequency (215 MHz) and high sensitivity MEMS resonant magnetic field sensor based on an AlN/FeGaB bilayer nano-plate resonator capable of detecting magnetic field at nano-Tesla level. Despite of the reduced volume and the high operating frequency of the sensor, high electromechanical performances were achieved (quality factor Q ≈ 511 and electromechanical coupling coefficient kt² ≈ 1.63%). This first prototype was characterized for different magnetic field levels from 0 to 152 Oe showing a frequency sensitivity of ~ 1 Hz/nT and a limit of detection of ~ 10 nT.


Mems Resonant Magnetic Field Sensor Based On An Aln/Fegab Bilayer Nano-Plate Resonator, Yu Hui, Tianxiang Nan, Nian Sun, Matteo Rinaldi Mar 2013

Mems Resonant Magnetic Field Sensor Based On An Aln/Fegab Bilayer Nano-Plate Resonator, Yu Hui, Tianxiang Nan, Nian Sun, Matteo Rinaldi

Tianxiang Nan

This paper reports on the first demonstration of an ultra-miniaturized, high frequency (215 MHz) and high sensitivity MEMS resonant magnetic field sensor based on an AlN/FeGaB bilayer nano-plate resonator capable of detecting magnetic field at nano-Tesla level. Despite of the reduced volume and the high operating frequency of the sensor, high electromechanical performances were achieved (quality factor Q ≈ 511 and electromechanical coupling coefficient kt² ≈ 1.63%). This first prototype was characterized for different magnetic field levels from 0 to 152 Oe showing a frequency sensitivity of ~ 1 Hz/nT and a limit of detection of ~ 10 nT.


Mems Resonant Magnetic Field Sensor Based On An Aln/Fegab Bilayer Nano-Plate Resonator, Yu Hui, Tianxiang Nan, Nian Sun, Matteo Rinaldi Feb 2013

Mems Resonant Magnetic Field Sensor Based On An Aln/Fegab Bilayer Nano-Plate Resonator, Yu Hui, Tianxiang Nan, Nian Sun, Matteo Rinaldi

Matteo Rinaldi

This paper reports on the first demonstration of an ultra-miniaturized, high frequency (215 MHz) and high sensitivity MEMS resonant magnetic field sensor based on an AlN/FeGaB bilayer nano-plate resonator capable of detecting magnetic field at nano-Tesla level. Despite of the reduced volume and the high operating frequency of the sensor, high electromechanical performances were achieved (quality factor Q ≈ 511 and electromechanical coupling coefficient kt² ≈ 1.63%). This first prototype was characterized for different magnetic field levels from 0 to 152 Oe showing a frequency sensitivity of ~ 1 Hz/nT and a limit of detection of ~ 10 nT.