Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza Feb 2013

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza

Matteo Rinaldi

A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same die have also …


Integration Of Chemical Sensing And Electrowetting Actuation On Chemoreceptive Neuron Mos (Cνmos) Transistors, Nick Shen, Zengtao Liu, Blake Jacquot, Bradley Minch, Edwin Kan Jul 2012

Integration Of Chemical Sensing And Electrowetting Actuation On Chemoreceptive Neuron Mos (Cνmos) Transistors, Nick Shen, Zengtao Liu, Blake Jacquot, Bradley Minch, Edwin Kan

Bradley Minch

An integration of chemical sensors and electrowetting actuators based on the chemoreceptive neuron MOS (CνMOS) transistors has brought forth a novel system-on-chip approach to the microfluidic system. The extended floating-gate structure of the CνMOS transistors enables monolithic sensing and actuating schemes. The sensors with generic chemical receptive areas have been characterized with various fluids, and have demonstrated a high sensitivity from the current differentiation and a large dynamic range from threshold-voltage shifts in sensing polar and electrolytic liquids. The actuators have illustrated valve functions based on contact-angle modification by nonvolatile charge injection into the channel wall. Electrochemical models for sensing …


Charge-Based Chemical Sensors: A Neuromorphic Approach With Chemoreceptive Neuron Mos (Cvmos) Transistors, Nick Shen, Zengtao Liu, Chungho Lee, Bradley Minch, Edwin Kan Jul 2012

Charge-Based Chemical Sensors: A Neuromorphic Approach With Chemoreceptive Neuron Mos (Cvmos) Transistors, Nick Shen, Zengtao Liu, Chungho Lee, Bradley Minch, Edwin Kan

Bradley Minch

A novel chemoreceptive neuron MOS (CνMOS) transistor with an extended floating-gate structure has been designed with several individual features that significantly facilitate system integration of chemical sensing. We have fabricated CνMOS transistors with generic molecular receptive areas and have characterized them with various fluids. We use an insulating polymer layer to provide physical and electrical isolation for sample fluid delivery. Experimental results from these devices have demonstrated both high sensitivity via current differentiation and large dynamic range from threshold voltage shifts in sensing both polar and electrolytic liquids. We have established electrochemical models for both steady-state and transient analyses. Our …


Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza Jun 2009

Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza

Matteo Rinaldi

In this work a nano-enabled gravimetric chemical sensor prototype based on single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNT) as nano-functionalization layer for Aluminun Nitride (AIN) contour-mode resonant-MEMS gravimetric sensors has been demonstrated. Two resonators fabricated on the same silicon chip and operating at different resonance frequencies, 287 and 450 MHz, were functionalized with this novel bio-coating layer to experimentally prove the capability of two distinct single strands of DNA bound to SWNT to enhance differently the adsorption of volatile organic compounds such as dinitroluene (DNT, simulant for explosive vapor) and dymethyl-methylphosphonate (DMMP, a simulant for nerve agent sarin). The …


Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza Jun 2009

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza

Matteo Rinaldi

A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same die have also …