Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Characterization Of Reactive Ion Etch Chemistries Using Direct Write Lithography, Dylan T. Martin-Abood Mar 2020

Characterization Of Reactive Ion Etch Chemistries Using Direct Write Lithography, Dylan T. Martin-Abood

Theses and Dissertations

The DoD requires a variety of COTS and number of custom microelectronics to provide important functionality to critical military systems. Photolithography and DRIE are two techniques commonly used in the development of deep anisotropic features for the fabrication and modification of microelectronics and MEMS. However, standard photolithography techniques are ineffective for unique substrate geometries and DRIE processes require a chemical passivation step only applicable to Si substrates. This work confirmed the capability of RIE using DWL to perform deep, highly selective, anisotropic etching on elevated, non-circular substrates.


On-Demand Electrically Induced Decomposition Of Thin-Film Nitrocellulose Membranes For Wearable Or Implantable Biosensor Systems, Benjamin M. Horstmann Jan 2020

On-Demand Electrically Induced Decomposition Of Thin-Film Nitrocellulose Membranes For Wearable Or Implantable Biosensor Systems, Benjamin M. Horstmann

Theses and Dissertations

Implantable or subcutaneous biosensors used for continuous health monitoring have a limited functional lifetime requiring frequent replacement and therefore may be highly discomforting to the patient and become costly. One possible solution to this problem is use of biosensor arrays where each individual reserve sensor can be activated on-demand when the previous one becomes inoperative due to biofouling or enzyme degradation. Each reserve biosensor in the array is housed in an individual Polydimethylsiloxane (PDMS) well and is protected from exposure to bodily fluids such as interstitial fluid ( ISF) by a thin-film nitrocellulose membrane. Controlled activation is achieved by decomposing …


Electric Field Control Of Fixed Magnetic Skyrmions For Energy Efficient Nanomagnetic Memory, Dhritiman Bhattacharya Jan 2020

Electric Field Control Of Fixed Magnetic Skyrmions For Energy Efficient Nanomagnetic Memory, Dhritiman Bhattacharya

Theses and Dissertations

To meet the ever-growing demand of faster and smaller computers, increasing number of transistors are needed in the same chip area. Unfortunately, Silicon based transistors have almost reached their miniaturization limits mainly due to excessive heat generation. Nanomagnetic devices are one of the most promising alternatives of CMOS. In nanomagnetic devices, electron spin, instead of charge, is the information carrier. Hence, these devices are non-volatile: information can be stored in these devices without needing any external power which could enable computing architectures beyond traditional von-Neumann computing. Additionally, these devices are also expected to be more energy efficient than CMOS devices …