Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene Jan 2021

Perovskite Thin Films Annealed In Supercritical Fluids For Efficient Solar Cells, Gilbert Annohene

Theses and Dissertations

In the field of photovoltaics, scientists and researchers are working fervently to produce a combination of efficient, stable, low cost and scalable devices. Methylammonium lead trihalide perovskite has attracted intense interest due to its high photovoltaic performance, low cost, and ease of manufacture. Their high absorption coefficient, tunable bandgap, low-temperature processing, and abundant elemental constituent provide innumerable advantages over other thin film absorber materials. Since the perovskite film is the most important in the device, morphology, crystallization, compositional and interface engineering have been explored to boost its performance and stability. High temperatures necessary for crystallization of organic-inorganic hybrid perovskite films …


Optical Spectroscopy Of Wide Bandgap Semiconductor Heterostructures And Group-Iv Alloy Quantum Dots, Tanner A. Nakagawara Jan 2017

Optical Spectroscopy Of Wide Bandgap Semiconductor Heterostructures And Group-Iv Alloy Quantum Dots, Tanner A. Nakagawara

Theses and Dissertations

Efficient and robust blue InGaN multiple quantum well (MQW) light emitters have become ubiquitous; however, they still have unattained theoretical potential. It is widely accepted that “localization” of carriers due to indium fluctuations theoretically enhance their efficiency by moderating defect-associated nonradiative recombination. To help develop a complete understanding of localization effects on carrier dynamics, this thesis explores degree of localization in InGaN MQWs and its dependence on well thickness and number of wells, through temperature and power dependent photoluminescence measurements. Additionally, silicon-compatible, nontoxic, colloidally synthesizable 2-5 nm Ge1-xSnx alloy quantum-dots (QDs) are explored for potential visible to …


Beyond Conventional C-Plane Gan-Based Light Emitting Diodes: A Systematic Exploration Of Leds On Semi-Polar Orientations, Morteza Monavarian Jan 2016

Beyond Conventional C-Plane Gan-Based Light Emitting Diodes: A Systematic Exploration Of Leds On Semi-Polar Orientations, Morteza Monavarian

Theses and Dissertations

Despite enormous efforts and investments, the efficiency of InGaN-based green and yellow-green light emitters remains relatively low, and that limits progress in developing full color display, laser diodes, and bright light sources for general lighting. The low efficiency of light emitting devices in the green-to-yellow spectral range, also known as the “Green Gap”, is considered a global concern in the LED industry. The polar c-plane orientation of GaN, which is the mainstay in the LED industry, suffers from polarization-induced separation of electrons and hole wavefunctions (also known as the “quantum confined Stark effect”) and low indium incorporation efficiency that …


Spectroscopy Studies Of Straincompensated Mid-Infrared Qcl Active Regions On Misoriented Substrates, Gregory Edward Triplett, Justin Grayer, Charles Meyer, Emily Cheng, Denzil Roberts Jan 2014

Spectroscopy Studies Of Straincompensated Mid-Infrared Qcl Active Regions On Misoriented Substrates, Gregory Edward Triplett, Justin Grayer, Charles Meyer, Emily Cheng, Denzil Roberts

Electrical and Computer Engineering Publications

In this work, we perform spectroscopic studies of AlGaAs/InGaAs quantum cascade laser structures that demonstrate frequency mixing using strain-compensated active regions. Using a three-quantum well design based on diagonal transitions, we incorporate strain in the active region using single and double well configurations on various surface planes (100) and (111). We observe the influence of piezoelectric properties in molecular beam epitaxy grown structures, where the addition of indium in the GaAs matrix increases the band bending in between injector regions and demonstrates a strong dependence on process conditions that include sample preparation, deposition rates, mole fraction, and enhanced surface diffusion …


Orientation-Dependent Pseudomorphic Growth Of Inas For Use In Lattice-Mismatched Mid-Infrared Photonic Structures, Gregory Edward Triplett, Charles Meyer, Emily Cheng Jan 2014

Orientation-Dependent Pseudomorphic Growth Of Inas For Use In Lattice-Mismatched Mid-Infrared Photonic Structures, Gregory Edward Triplett, Charles Meyer, Emily Cheng

Electrical and Computer Engineering Publications

In this study, InAs was deposited on GaAs (100) and GaAs (111)B 2 degrees towardssubstrates for the purpose of differentiating the InAs growth mode stemming from strain and then analyzed using in-situ reflection high energy electron diffraction, scanning electron microscopy, Raman spectroscopy, reflectance spectroscopy, and atomic force microscopy. The procession of InAs deposition throughout a range of deposition conditions results in assorted forms of strain relief revealing that, despite lattice mismatch for InAs on GaAs (approximately 7%), InAs does not necessarily result in typical quantum dot/wire formation on (111) surfaces, but instead proceeds two-dimensionally due primarily to the surface orientation.


Extending Device Performance In Photonic Devices Using Piezoelectric Properties, Gregory Edward Triplett Jan 2013

Extending Device Performance In Photonic Devices Using Piezoelectric Properties, Gregory Edward Triplett

Electrical and Computer Engineering Publications

This study focuses on the influence of epi-layer strain and piezoelectric effects in asymmetric GaInAs/GaAlAs action regions that potentially lead to intra-cavity frequency mixing. The theoretical limits for conduction and valence band offsets in lattice-matched semiconductor structures have resulted in the deployment of non-traditional approaches such as strain compensation to extend wavelength in intersubband devices, where strain limits are related to misfit dislocation generation. Strain and piezoelectric effects have been studied and verified using select photonic device designs. Metrics under this effort also included dipole strength, oscillator strength, and offset of energy transitions, which are strongly correlated with induced piezoelectric …


Pseudomorphic Growth Of Inas On Misoriented Gaas For Extending Quantum Cascade Laser Wavelength, Gregory Edward Triplett, Charles Meyer, Emily Cheng, Justin Grayer, David Mueller, Denzil Roberts, Samuel Graham Jan 2013

Pseudomorphic Growth Of Inas On Misoriented Gaas For Extending Quantum Cascade Laser Wavelength, Gregory Edward Triplett, Charles Meyer, Emily Cheng, Justin Grayer, David Mueller, Denzil Roberts, Samuel Graham

Electrical and Computer Engineering Publications

The authors have studied the impact of epilayer strain on the deposition of InAs/GaAs on (100) and (111)B with 2 degrees offset toward 2-1-1 surfaces. Consequences of a 7% lattice mismatch between these orientations in the form of three-dimensional growth are less apparent for (111)B with 2 degrees offset toward 2-1-1 surfaces compared to (100). By exploring a range of molecular beam epitaxy process parameters for InAs/GaAs growth and utilizing scanning electron microscopy, atomic force microscopy, and Raman spectroscopy to evaluate the quality of these strained layers, the authors develop empirical models that describe the influence of the process conditions …