Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Switching Trajectory Control For High Voltage Silicon Carbide Power Devices With Novel Active Gate Drivers, Shuang Zhao Aug 2019

Switching Trajectory Control For High Voltage Silicon Carbide Power Devices With Novel Active Gate Drivers, Shuang Zhao

Graduate Theses and Dissertations

The penetration of silicon carbide (SiC) semiconductor devices is increasing in the power industry due to their lower parasitics, higher blocking voltage, and higher thermal conductivity over their silicon (Si) counterparts. Applications of high voltage SiC power devices, generally 10 kV or higher, can significantly reduce the amount of the cascaded levels of converters in the distributed system, simplify the system by reducing the number of the semiconductor devices, and increase the system reliability.

However, the gate drivers for high voltage SiC devices are not available on the market. Also, the characteristics of the third generation 10 kV SiC MOSFETs …


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites …


Algorithmic Multi-Color Cmos Avalanche Photodiodes For Smart-Lighting Applications, Md Mottaleb Hossain May 2019

Algorithmic Multi-Color Cmos Avalanche Photodiodes For Smart-Lighting Applications, Md Mottaleb Hossain

Optical Science and Engineering ETDs

Future smart-lighting systems are expected to deliver adaptively color-tunable and high-quality lighting that is energy efficient while also offering integrated visible-light wireless communication services. To enable these systems at a commercial level, inexpensive and fast sensors with spectral-sensing capability are required. CMOS-compatible silicon avalanche photodiodes (APDs) can be an excellent fit to this problem due to their excellent sensitivity, high speeds and cost effectiveness; however, color sensing is a challenge without resorting to expensive spectral filters, as done in commercially. To address this challenge, we have recently designed and modeled a novel CMOS-compatible dual-junction APD. The device outputs two photocurrents …


A Silicon Germanium Cmos Linear Voltage Regulator For Wireless Agricultural Applications, Aminta Naidili Castillo Robles May 2019

A Silicon Germanium Cmos Linear Voltage Regulator For Wireless Agricultural Applications, Aminta Naidili Castillo Robles

Graduate Theses and Dissertations

This thesis presents the design, simulation and test results of a silicon germanium (SiGe) complementary metal-oxide-semiconductor (CMOS) linear regulator. The objective of the circuit is to power other analog devices regardless of the load current and input voltage changes. The application of this regulator is to be part of a project developing a miniaturized semiconductor platform that can be inserted into stems of crops in order to measure data inside the plant and then send it wirelessly to the user. The linear regulator was designed on a BiCMOS SiGe 0.13µm which is a GlobalFoundries process. It has been tested at …


Bgaas Alloy Semiconductors For Lasers On Silicon, Joshua Mcarthur May 2019

Bgaas Alloy Semiconductors For Lasers On Silicon, Joshua Mcarthur

Mechanical Engineering Undergraduate Honors Theses

In the world of semiconductors today, there is a large dissonance between optical devices and electrical application. Due to the limitations of electron transport, photonic integrated circuits are soon-to-be vital in fields like telecommunications and sensing. Right now, these PIC’s are mostly made from indium phosphide. Due to its ubiquitous nature, however, there is a huge push to integrate efficient optics with silicon. It’s cheap, abundant, dope-able, and our electronic infrastructure is based on it. The reason why silicon photonics aren’t already commercialized is because of silicon’s indirect bandgap—it is inefficient with optical applications. The problem with combining direct gap …


Direct Printing Of Conductive Inks For Organic Electronics And Wearable Microfluidics, Aditi Naik Mar 2019

Direct Printing Of Conductive Inks For Organic Electronics And Wearable Microfluidics, Aditi Naik

Doctoral Dissertations

This dissertation examines the direct printing of conductive inks on polymeric substrates for applications in organic electronics, microfluidic valving systems, and wearable sweat sensors. The inexpensive production of solution-based electrodes with high electrical conductivity is necessary to enable the next-generation of printed, flexible, and organic electronics. Specifically, the optimization and printing of liquid-phase graphene ink and nanoparticle-based silver ink by soft nanoimprint lithography and inkjet-printing is discussed to achieve printed functional devices. Using scalable low-cost patterning systems, these flexible applications are compatible with roll-to-roll processing, enabling large-scale manufacturing. This research expands the knowledge of high-resolution printing optimization for the direct …


Engineering Plasmonic Nanostructures For Light Management And Sensing, Sujan Phani Kumar Kasani Jan 2019

Engineering Plasmonic Nanostructures For Light Management And Sensing, Sujan Phani Kumar Kasani

Graduate Theses, Dissertations, and Problem Reports

The two major global problems are to provide health safety and to meet energy demands for ever growing population on a large scale. The study of light interaction with nanostructures has shown a promising solution in improving the fields of bio-sensor and solar energy devices which addresses above mentioned two major global problems. Nanostructures have tunable physicochemical properties such as light absorption, electrical and thermal properties unlike bulk materials, which gives an advantage in applications like bio-sensing and energy harvesting devices. The development of nanofabrication techniques along with the discovery of Surface Enhanced Raman Scattering (SERS) and Plasmon Enhanced Fluorescence …