Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Theses/Dissertations

Nanorods

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Fabrication And Characterization Of Electrochemical Glucose Sensors, Mohammed Marie Dec 2018

Fabrication And Characterization Of Electrochemical Glucose Sensors, Mohammed Marie

Graduate Theses and Dissertations

Electrochemical sensors based on the nanostructure of the semiconductor materials are of tremendous interest to be utilized for glucose monitoring. The sensors, based on the nanostructure of the semiconductor materials, are the third generations of the glucose sensors that are fast, sensitive, and cost-effect for glucose monitoring.

Glucose sensors based on pure zinc oxide nanorods (NRs) grown on different substrates, such ITO, FTO, and Si/SiO2/Au, were investigated in this research. Silicon nanowire (NW)- based glucose sensors were also studied. First, an enzyme-based glucose sensor was fabricated out of glass/ITO/ZnO NRs/BSA/GOx/nafion membrane. The sensor was tested amperometrically at different glucose concentrations. …


Zinc Oxide Nanorod Based Ultraviolet Detectors With Wheatstone Bridge Design, Arun Vasudevan Dec 2013

Zinc Oxide Nanorod Based Ultraviolet Detectors With Wheatstone Bridge Design, Arun Vasudevan

Graduate Theses and Dissertations

This research work, for the first time, investigated metal semiconductor-metal (MSM) zine oxide (ZnO) nanorod based ultra-violet (UV) detectors having a Wheatstone bridge design with a high

responsivity at room temperature and above, as well as a responsivity that was largely independent of the change in ambient conditions. The ZnO nanorods which acted as the sensing element of the detector were grown by a chemical growth technique. Studies were conducted to determine the effects on ZnO nanorod properties by varying the concentration of the chemicals used for the rod growth. These studies showed how the rod diameter and the deposition …