Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Switching Trajectory Control For High Voltage Silicon Carbide Power Devices With Novel Active Gate Drivers, Shuang Zhao Aug 2019

Switching Trajectory Control For High Voltage Silicon Carbide Power Devices With Novel Active Gate Drivers, Shuang Zhao

Graduate Theses and Dissertations

The penetration of silicon carbide (SiC) semiconductor devices is increasing in the power industry due to their lower parasitics, higher blocking voltage, and higher thermal conductivity over their silicon (Si) counterparts. Applications of high voltage SiC power devices, generally 10 kV or higher, can significantly reduce the amount of the cascaded levels of converters in the distributed system, simplify the system by reducing the number of the semiconductor devices, and increase the system reliability.

However, the gate drivers for high voltage SiC devices are not available on the market. Also, the characteristics of the third generation 10 kV SiC MOSFETs …


A Silicon Germanium Cmos Linear Voltage Regulator For Wireless Agricultural Applications, Aminta Naidili Castillo Robles May 2019

A Silicon Germanium Cmos Linear Voltage Regulator For Wireless Agricultural Applications, Aminta Naidili Castillo Robles

Graduate Theses and Dissertations

This thesis presents the design, simulation and test results of a silicon germanium (SiGe) complementary metal-oxide-semiconductor (CMOS) linear regulator. The objective of the circuit is to power other analog devices regardless of the load current and input voltage changes. The application of this regulator is to be part of a project developing a miniaturized semiconductor platform that can be inserted into stems of crops in order to measure data inside the plant and then send it wirelessly to the user. The linear regulator was designed on a BiCMOS SiGe 0.13µm which is a GlobalFoundries process. It has been tested at …


Investigation Of Critical Technologies Of Chemical Vapor Deposition For Advanced (Si)Gesn Materials, Joshua Matthew Grant May 2019

Investigation Of Critical Technologies Of Chemical Vapor Deposition For Advanced (Si)Gesn Materials, Joshua Matthew Grant

Graduate Theses and Dissertations

The development of new materials for efficient optoelectronic devices from Group IV elements is the heart of Group IV photonics. This has direct ties to modern technology as the foundation for the electronics industry is silicon. This has driven the development of silicon-based optoelectronics using these other Group IV materials as silicon is a poor optical material due to its indirect band gap when compared to the III-V semiconductors that are used by most of the optoelectronics industry. While efforts have been made to integrate III-V materials onto silicon substrates, the incompatibility with the complementary metal oxide semiconductor process has …