Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics

2019

Institution
Keyword
Publication
Publication Type

Articles 1 - 22 of 22

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Reducing The Production Cost Of Semiconductor Chips Using (Parallel And Concurrent) Testing And Real-Time Monitoring, Qutaiba Khasawneh Dec 2019

Reducing The Production Cost Of Semiconductor Chips Using (Parallel And Concurrent) Testing And Real-Time Monitoring, Qutaiba Khasawneh

Electrical Engineering Theses and Dissertations

Consumer electronics changed the semiconductor industry by developing many new challenges for consumer products. One of the main challenges in the consumer product is that it propelled the volume of production to massive production, e.g. hundreds of millions of cell phones are produced yearly. Combined with the overproduction of consumer products, price pressure is another challenge for consumer products. Many of the new techniques used in the design and fabrication enabled the integration of more devices in the same chips. This reduced the cost of the chips, lowered the power consumption, increased the circuit operation speed, enabled more reliable implementation, …


Design And Optimization Of A High Power Density Silicon Carbide Traction Inverter, Tyler Adamson Dec 2019

Design And Optimization Of A High Power Density Silicon Carbide Traction Inverter, Tyler Adamson

Graduate Theses and Dissertations

This project was initiated with the goal of demonstrating a 3-phase silicon carbide based 150-kW 25 kW/L DC-AC power conversion unit capable of operation with coolant temperatures up to 90°C. The project goals were met and exceeded by first analyzing the established inverter topologies to find which one would yield the highest power density while still meeting electrical performance needs in the 150-kW range. Following topology selection, the smallest silicon carbide power module that met the electrical requirements of the system was found through experimental testing and simulation. After a power module selection was finalized, a DC link capacitor bank …


High Frequency Ltcc Based Planar Transformer, Adithya Venkatanarayanan Dec 2019

High Frequency Ltcc Based Planar Transformer, Adithya Venkatanarayanan

Graduate Theses and Dissertations

As we move towards high power and higher frequency related technology, conventional wire-wound magnetics have their own limitations which has led path to the development of planar based magnetic materials. Nowadays more planar magnetic technology has been employed because it is easier to fabricate them. The planar magnetic is a transformer or an inductor that replaces the wire-wound transformer or inductors which generally uses copper wires. One of the main reasons why we move to planar magnetic technology is its operation at higher frequency which provides higher power density. This study explains in detail about the design and fabrication of …


Design And Analysis Of Modular Axial Flux Switched Reluctance Motor, Rochak Shiwakoti Aug 2019

Design And Analysis Of Modular Axial Flux Switched Reluctance Motor, Rochak Shiwakoti

University of New Orleans Theses and Dissertations

This thesis presents a new modular structure of the axial flux Switched Reluctance Motor (SRM). The design consists of four stator disks with each adjacent disk rotated 30 degrees apart and four rotor disks connected to a common shaft. The proposed design aims to reduce the unwanted radial force, mitigate the torque ripple, and improve the efficiency. The modular structure distributes the radial force and torque strokes along the axial length of the motor, potentially damping the torque pulsation. In addition, the modular structure would deliver the rating power at a lower current level, reducing the overall ohmic loss. Moreover, …


Smart Charging Of Future Electric Vehicles Using Roadway Infrastructure, Sara Ahmed, Ethan Ahn, Mahmoud Reda Taha, Samer Dessouky, Moneeb Genedy, Daniel Fernandez, Ann Sebestian, Patience Raby Aug 2019

Smart Charging Of Future Electric Vehicles Using Roadway Infrastructure, Sara Ahmed, Ethan Ahn, Mahmoud Reda Taha, Samer Dessouky, Moneeb Genedy, Daniel Fernandez, Ann Sebestian, Patience Raby

Publications

Inspired by the fact that there is an immense amount of renewable energy sources available on the roadways such as mechanical pressure and frictional heat, this study presented the development and implementation of an innovative charging technique for future electric vehicles (EVs) by fully utilizing the existing roadways and the state-of-the-art nanotechnology and power electronics. The project introduced a novel wireless charging system, SIC (Smart Illuminative Charging), that uses LEDs powered by piezoelectric nanomaterials as the energy transmitter source and thin film solar panels placed at the bottom of the EVs as the receiver, which is then poised to deliver …


Residential Electricity Management And Protection System, Ejimonu Kosisochukwu Gabriel Aug 2019

Residential Electricity Management And Protection System, Ejimonu Kosisochukwu Gabriel

Journal of International Technology and Information Management

The Residential Electricity Monitoring System is an electricity meter connected to the Internet to provide real time data on the power system in your home. The REMS is designed to replace the distribution board allowing it to conduct a series of tests on the quality of the electricity supply to your home/facility and, within your home detect basic wiring faults and allow owners and service providers to identify potential problems with the electrical systems.

The electrical monitoring system finally puts proper electrical control into the hands of the home owner by providing him with the ability to control power distribution …


Energy Transformation And Conservation Investigation, Mike Jackson, Holly Haney Jul 2019

Energy Transformation And Conservation Investigation, Mike Jackson, Holly Haney

High School Lesson Plans

Students will use a thermoelectric generator module to analyze the relationship between thermal and electrical energies. Using data collection sensors and analysis software, students will investigate the relationship between the temperature gradient across a thermoelectric generator module and the resulting electrical potential. Students will then use their data and analysis to solve problems relating to waste thermal energy in electrical systems and communicate their work to their peers and teacher.


Dc-Dc Converter For Electric Vehicle, Jason Y. Zhou, Nicholas James Mah Jun 2019

Dc-Dc Converter For Electric Vehicle, Jason Y. Zhou, Nicholas James Mah

Electrical Engineering

In this work, a DC-DC converter is designed for an electric vehicle. The DC-DC converter is designed to provide 500W with a 200-400V input and a 12-15V adjustable output. Electric vehicle sales are beginning to increase in popularity and the need for DC-DC converters to siphon power from the tractive system is not yet fully satisfied, especially for single-seater class vehicles. Additionally, improving performance in efficiency without sacrificing wide input voltage range can benefit future DC-DC converter designs. In the end, a forward active clamp DC-DC converter is designed and tested. Additionally, spreadsheet calculators, LTSpice simulations, and Matlab scripts were …


Designing A Low-Cost Ultrasound Pulser, Andrea Huey Jun 2019

Designing A Low-Cost Ultrasound Pulser, Andrea Huey

Honors Theses

Ultrasound imaging allows for those studying living beings to see inside a subject without causing it harm. This allows for real-time images to be taken, leading to ease of observational research. However, while this technology is beneficial to those who utilize it, the devices used to create and receive ultrasound pulses can be incredibly complex, allowing for precise adjustment of the output signal and various other functions, and therefore expensive. The focus of this senior project is the design of a low-cost pulser for use with an ultrasound transducer. While it does not have all the high-level functions of the …


Prototyping A Capacitive Sensing Device For Gesture Recognition, Chenglong Lin May 2019

Prototyping A Capacitive Sensing Device For Gesture Recognition, Chenglong Lin

Computer Science and Computer Engineering Undergraduate Honors Theses

Capacitive sensing is a technology that can detect proximity and touch. It can also be utilized to measure position and acceleration of gesture motions. This technology has many applications, such as replacing mechanical buttons in a gaming device interface, detecting respiration rate without direct contact with the skin, and providing gesture sensing capability for rehabilitation devices. In this thesis, an approach to prototype a capacitive gesture sensing device using the Eagle PCB design software is demonstrated. In addition, this paper tested and evaluated the resulting prototype device, validating the effectiveness of the approach.


Characterization Of High Temperature Optocoupler For Power Electronic Systems, David Gonzalez May 2019

Characterization Of High Temperature Optocoupler For Power Electronic Systems, David Gonzalez

Electrical Engineering Undergraduate Honors Theses

High-temperature devices have been rapidly increas due to the implementation of new technologies like silicon carbide, high-temperature ceramic, and others. Functionality under elevated temperatures can reduce signal integrity reducing the reliability of power electronic systems. This study presents an ongoing research effort to develop a high-temperature package for optocouplers to operate at higher temperature compared with commercial devices. Low temperature co-fired ceramic (LTCC) was used as the substrate. Bare die commercial LED and photodetectors were attached to the substrate and tested for functionality. Preliminary results show enhanced performance at elevated temperatures compared to a commercial optocoupler device.


Synchrophasor-Based Fault Location Detection And Classification, In Power Systems, Using Artificial Intelligence, Hemal Falak May 2019

Synchrophasor-Based Fault Location Detection And Classification, In Power Systems, Using Artificial Intelligence, Hemal Falak

Graduate Theses and Dissertations

With the introduction of sophisticated electronic gadgets which cannot sustain interruption in the provision of electricity, the need to supply uninterrupted and reliable power supply, to the consumers, has become a crucial factor in the present-day world. Therefore, it is customary to correctly identify fault locations in an electrical power network, in order to rectify faults and restore power supply in the minimum possible time. Many automated fault location detection algorithms have been proposed, however, prior art requires topological and physical information of the electrical power network. This thesis presents a new method of detecting fault locations, in transmission as …


Mesoscale Ceramic Cylindrical Ion Trap Mass Analyzers For In Situ Sample Analysis, Patrick Roman Mar 2019

Mesoscale Ceramic Cylindrical Ion Trap Mass Analyzers For In Situ Sample Analysis, Patrick Roman

FIU Electronic Theses and Dissertations

As wireless network devices and IOT connectivity develop, the application and demand for small, low power, in situ sensors and instruments will expand. There are continuous efforts in the miniaturization of sensors and scientific instrument systems for conventional to field deployable and rugged hand held units for personal use to extreme harsh environment applications. This work investigates mesoscale cylindrical ion trap (CIT) mass analyzer design and the benefits of CITs realized via additive manufactured metalized ceramic material systems for improved ion signal, low power performance, and extended dynamic range. Rugged monolithic miniature mass spectrometer ceramic CIT chips have been produced …


Energy Efficiency Of Computation In All-Spin Logic: Projections And Fundamental Limits, Zongya Chen Mar 2019

Energy Efficiency Of Computation In All-Spin Logic: Projections And Fundamental Limits, Zongya Chen

Masters Theses

Built with nanomagnets, a spintronic device called the all-spin logic (ASL) device carries information with only spin currents, resulting in a low power supply--10 mV. This voltage is 100 times smaller than the conventional CMOS devices (usually 0.8~1V). The potential for improved energy efficiency made possible by the low operating voltage of ASL makes it one of the most promising devices among its post-CMOS competitors.

The basic working principles of ASL device are introduced in this thesis and two complementary approaches to studying energy efficiency of computation are applied to a common set of ASL circuits: (1) a circuit simulation …


Experimental Study And Modeling Of The Gm-I Dependence Of Long-Channel Mosfets, Michael Fong Cheng Mar 2019

Experimental Study And Modeling Of The Gm-I Dependence Of Long-Channel Mosfets, Michael Fong Cheng

Master's Theses

This thesis describes an experimental study and modeling of the current-transconductance dependence of the ALD1106, ALD1107, and CD4007 arrays. The study tests the hypothesis that the I-gm dependence of these 7.8 µm to 10 µm MOSFETs conforms to the Advanced Compact Model (ACM). Results from performed measurements, however, do not support this expectation. Despite the relatively large length, both ALD1106 and ALD1107 show sufficiently pronounced ‘short-channel’ effects to render the ACM inadequate. As a byproduct of this effort, we confirmed the modified ACM equation. With an m factor of approximately 0.6, it captures the I-gm dependence with sub-28% maximum error …


Investigation Of Radiation-Hardened Design Of Electronic Systems With Applications To Post-Accident Monitoring For Nuclear Power Plants, Qiang Huang Feb 2019

Investigation Of Radiation-Hardened Design Of Electronic Systems With Applications To Post-Accident Monitoring For Nuclear Power Plants, Qiang Huang

Electronic Thesis and Dissertation Repository

This research aims at improving the robustness of electronic systems used-in high level radiation environments by combining with radiation-hardened (rad-hardened) design and fault-tolerant techniques based on commercial off-the-shelf (COTS) components. A specific of the research is to use such systems for wireless post-accident monitoring in nuclear power plants (NPPs). More specifically, the following methods and systems are developed and investigated to accomplish expected research objectives: analysis of radiation responses, design of a radiation-tolerant system, implementation of a wireless post-accident monitoring system for NPPs, performance evaluation without repeat physical tests, and experimental validation in a radiation environment.

A method is developed …


Herramienta Computacional Para La Organización Y Presentación De Datos De Descargas Atmosféricas En Circuitos Eléctricos Aéreos De Media Tensión, Diego Alejandro González Lizcano Jan 2019

Herramienta Computacional Para La Organización Y Presentación De Datos De Descargas Atmosféricas En Circuitos Eléctricos Aéreos De Media Tensión, Diego Alejandro González Lizcano

Ingeniería Eléctrica

El territorio colombiano presenta una de las más altas actividades atmosféricas del planeta. Esto según estudios de niveles isoceráunicos realizados en todo el mundo (Torres & Ávila, 2000). Entregando retos de confiabilidad para sistemas de transmisión y distribución eléctrica, puesto que, para estos sistemas el factor de mayor incidencia en el incremento de la discontinuidad del suministro son las descargas atmosféricas. Además, las incidencias sobre las líneas aéreas o en cercanía de estas, generan flameos en los aisladores, deteriorando la confiabilidad del sistema si no se realizan maniobras de mantenimiento preventivo. Ceñido a nuevos avances tecnológicos en la localización y …


Medidor De Corriente Eléctrica No Intrusivo En Tiempo Real Para Redes De Baja Tensión, Alejandro Gómez Martínez Jan 2019

Medidor De Corriente Eléctrica No Intrusivo En Tiempo Real Para Redes De Baja Tensión, Alejandro Gómez Martínez

Ingeniería Eléctrica

En el presente trabajo se diseñó e implementó un medidor de corriente para redes de baja tensión con un rango de medición de 0 a 7 A rms. También, se implementó un medidor de tensión en el dominio del tiempo. Este medidor de corriente no es intrusivo, por lo que se hace fácil de instalar y mitiga el riesgo eléctrico del personal que instala esta clase de medidores. Además, es de bajo costo, lo cual beneficia a los usuarios que tienen la necesidad de adquirir este tipo de medidor. El medidor es capaz de realizar mediciones de potencia, y podría …


Fabrication And Characterization Of Planar-Structure Perovskite Solar Cells, Guoduan Liu Jan 2019

Fabrication And Characterization Of Planar-Structure Perovskite Solar Cells, Guoduan Liu

Theses and Dissertations--Electrical and Computer Engineering

Currently organic-inorganic hybrid perovskite solar cells (PSCs) is one kind of promising photovoltaic technology due to low production cost, easy fabrication method and high power conversion efficiency.

Charge transport layers are found to be critical for device performance and stability. A traditional electron transport layer (ETL), such as TiO2 (Titanium dioxide), is not very efficient for charge extraction at the interface. Compared with TiO2, SnO2 (Tin (IV) Oxide) possesses several advantages such as higher mobility and better energy level alignment. In addition, PSCs with planar structure can be processed at lower temperature compared to PSCs with …


S.A.V.E. M.E., Taylor Davis, Kelly Nicole O'Neill, Adrianna M. Dunlap, Parsa Esshaghi Bayat Jan 2019

S.A.V.E. M.E., Taylor Davis, Kelly Nicole O'Neill, Adrianna M. Dunlap, Parsa Esshaghi Bayat

Williams Honors College, Honors Research Projects

S.A.V.E. M.E. stands for Submerged Automated Vehicular Elevation Minor Extraction or alternatively a Home Swimming Pool Rescue Device. The objective of this project is to design and prototype a system that will make unattended swimming pools through detecting a victim’s presence, deploying a means to save the victim, and alerting others nearby of the situation. This system encompasses sensors and devices within the pool and an alarm system outside of the pool. Upon detection of a sufficiently sized object entering the pool when the system is armed, a device will maneuver to the victim and deploy a flotation device that …


Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed Jan 2019

Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed

Theses and Dissertations

Nanomagnetic devices have been projected as an alternative to transistor-based switching devices due to their non-volatility and potentially superior energy-efficiency. The energy efficiency is enhanced by the use of straintronics which involves the application of a voltage to a piezoelectric layer to generate a strain which is ultimately transferred to an elastically coupled magnetostrictive nanomaget, causing magnetization rotation. The low energy dissipation and non-volatility characteristics make straintronic nanomagnets very attractive for both Boolean and non-Boolean computing applications. There was relatively little research on straintronic switching in devices built with real nanomagnets that invariably have defects and imperfections, or their adaptation …


Energy Efficient Spintronic Device For Neuromorphic Computation, Md Ali Azam Jan 2019

Energy Efficient Spintronic Device For Neuromorphic Computation, Md Ali Azam

Theses and Dissertations

Future computing will require significant development in new computing device paradigms. This is motivated by CMOS devices reaching their technological limits, the need for non-Von Neumann architectures as well as the energy constraints of wearable technologies and embedded processors. The first device proposal, an energy-efficient voltage-controlled domain wall device for implementing an artificial neuron and synapse is analyzed using micromagnetic modeling. By controlling the domain wall motion utilizing spin transfer or spin orbit torques in association with voltage generated strain control of perpendicular magnetic anisotropy in the presence of Dzyaloshinskii-Moriya interaction (DMI), different positions of the domain wall are realized …