Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 20 of 20

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Flexible Custom Electric Skateboard, Caleb Adam Kelsay Dec 2017

Flexible Custom Electric Skateboard, Caleb Adam Kelsay

Electrical Engineering

At Cal Poly traveling long distances only accessible by foot such as across campus or from the car park to class can be tiring and time-consuming. While not physically demanding, the trek consumes time in our tight college life schedule. To improve our time efficiency this project provides a relatively lightweight, powered solution to quickly and effectively travel long distances while maintaining full control and safety even on hills, a current limitation of traditional skateboards.

This electric skateboard includes the battery capacity to travel all around campus on a single charge with a compact and flexible skateboard design that provides …


Modeling Of Thermally Aware Carbon Nanotube And Graphene Based Post Cmos Vlsi Interconnect, K M Mohsin Nov 2017

Modeling Of Thermally Aware Carbon Nanotube And Graphene Based Post Cmos Vlsi Interconnect, K M Mohsin

LSU Doctoral Dissertations

This work studies various emerging reduced dimensional materials for very large-scale integration (VLSI) interconnects. The prime motivation of this work is to find an alternative to the existing Cu-based interconnect for post-CMOS technology nodes with an emphasis on thermal stability. Starting from the material modeling, this work includes material characterization, exploration of electronic properties, vibrational properties and to analyze performance as a VLSI interconnect. Using state of the art density functional theories (DFT) one-dimensional and two-dimensional materials were designed for exploring their electronic structures, transport properties and their circuit behaviors. Primarily carbon nanotube (CNT), graphene and graphene/copper based interconnects were …


Three-Dimensional Memristor Integrated Circuits And Applications, Peng Lin Nov 2017

Three-Dimensional Memristor Integrated Circuits And Applications, Peng Lin

Doctoral Dissertations

New computing paradigms are highly demanded in the “Big Data” era to efficiently process, store and extract useful information from overwhelmingly rich amount of data. New computing systems based on large scale memristor circuits emerges as a very promising candidate due to its capability to both store and process information, thus eliminating the von Neumann bottleneck in the conventional complementary metal oxide semiconductor (CMOS) based computers. As the lateral scaling of the device geometry approaching its physical limit, three-dimensional stacking of multiple device layers becomes necessary to further increase the packing density. Moreover, innovations in the 3D circuits design can …


Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway Oct 2017

Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway

FIU Electronic Theses and Dissertations

A continuous increase in demands from the utility grid and traction applications have steered public attention toward the integration of energy storage (ES) and hybrid ES (HESS) solutions. Modern technologies are no longer limited to batteries, but can include supercapacitors (SC) and flywheel electromechanical ES well. However, insufficient control and algorithms to monitor these devices can result in a wide range of operational issues. A modern day control platform must have a deep understanding of the source. In this dissertation, specialized modular Energy Storage Management Controllers (ESMC) were developed to interface with a variety of ES devices. The EMSC provides …


Design Of Dc-Link Vscf Ac Electrical Power System For The Embraer 190/195 Aircraft, Eduardo Francis Carvalho Freitas, Nihad E. Daidzic Sep 2017

Design Of Dc-Link Vscf Ac Electrical Power System For The Embraer 190/195 Aircraft, Eduardo Francis Carvalho Freitas, Nihad E. Daidzic

Journal of Aviation Technology and Engineering

A proposed novel DC-Link VSCF AC-DC-AC electrical power system converter for Embraer 190/195 transport category airplane is presented. The proposed converter could replace the existing conventional system based on the CSCF IDGs. Several contemporary production airplanes already have VSCF as a major or backup source of electrical power. Problems existed with the older VSCF systems in the past; however, the switched power electronics and digital controllers have matured and can be now, in our opinion, safely integrated and replace existing constant-speed hydraulic transmissions powering CSCF AC generators. IGBT power transistors for medium-level power conversion and relatively fast efficient switching are …


Nanostructure Evolution Of Magnetron Sputtered Hydrogenated Silicon Thin Films, Dipendra Adhikari, Maxwell M. Junda, Sylvain X. Marsillac, Robert W. Collins, Nikolas J. Podraza Aug 2017

Nanostructure Evolution Of Magnetron Sputtered Hydrogenated Silicon Thin Films, Dipendra Adhikari, Maxwell M. Junda, Sylvain X. Marsillac, Robert W. Collins, Nikolas J. Podraza

Electrical & Computer Engineering Faculty Publications

Hydrogenated silicon (Si:H) thin films have been prepared by radio frequency (RF) magnetron sputtering. The effect of hydrogen gas concentration during sputtering on the resultant film structural and optical properties has been investigated by real time spectroscopic ellipsometry (RTSE) and grazing incidence x-ray diffraction (GIXRD). The analysis of in-situ RTSE data collected during sputter deposition tracks the evolution of surface roughness and film bulk layer thickness with time. Growth evolution diagrams depicting amorphous, nanocrystalline and mixed-phase regions for low and high deposition rate Si:H are constructed and the effects of process parameter (hydrogen gas concentration, total pressure and RF power) …


Design & Evaluation Of A Hybrid Switched Capacitor Circuit With Wide-Bandgap Devices For Dc Grid Applications, Joshua L. Stewart Jul 2017

Design & Evaluation Of A Hybrid Switched Capacitor Circuit With Wide-Bandgap Devices For Dc Grid Applications, Joshua L. Stewart

Electrical and Computer Engineering ETDs

ABSTRACT

As technologies advance, the rate at which renewable power sources, such as solar photovoltaic (PV) and wind, are being added to the power grid is increasing. Typically, PV power plants require large inverters for direct current to alternating current (DC-AC) power conversion, as well as large transformers to step up voltages to the grid voltage. Offshore wind farms and large PV power plants in remote locations often aggregate power on a DC bus in order to improve efficiency and reduce the cost of power conversion hardware within the energy complex. However, the power must still be converted to AC …


Dynamic Range Limitations Of Low-Noise Microwave Transistors At Cryogenic Temperatures, Ahmet Hakan Coskun Jul 2017

Dynamic Range Limitations Of Low-Noise Microwave Transistors At Cryogenic Temperatures, Ahmet Hakan Coskun

Doctoral Dissertations

Dynamic range is an important metric that specifies the limits of input signal amplitude for the ideal operation of a given receiver. The low end of dynamic range is defined by the noise floor whereas the upper limit is determined by large-signal distortion. While dynamic range can be predicted in the temperature range where compact transistor models are valid, the lack of large-signal models at temperatures below -55 C prevents the prediction and optimization of dynamic range for applications that require cryogenic cooling. For decades, the main goal concerning the performance of these applications was lowering the noise floor of …


Ionic Thermoelectric Paper, Fei Jiao, Ali Naderi, Dan Zhao, Joshua Schlueter, Maryam Shahi, Jonas Sundström, Hjalmar Granberg, Jesper Edberg, Ujwala Ail, Joseph W. Brill, Tom Lindström, Magnus Berggren, Xavier Crispin Jun 2017

Ionic Thermoelectric Paper, Fei Jiao, Ali Naderi, Dan Zhao, Joshua Schlueter, Maryam Shahi, Jonas Sundström, Hjalmar Granberg, Jesper Edberg, Ujwala Ail, Joseph W. Brill, Tom Lindström, Magnus Berggren, Xavier Crispin

Physics and Astronomy Faculty Publications

Ionic thermoelectric materials, for example, polyelectrolytes such as polystyrene sulfonate sodium (PSSNa), constitute a new class of materials which are attracting interest because of their large Seebeck coefficient and the possibility that they could be used in ionic thermoelectric SCs (ITESCs) and field effect transistors. However, pure polyelectrolyte membranes are not robust or flexible. In this paper, the preparation of ionic thermoelectric paper using a simple, scalable and cost-effective method is described. After a composite was fabricated with nanofibrillated cellulose (NFC), the resulting NFC–PSSNa paper is flexible and mechanically robust, which is desirable if it is to be used in …


A Hardware One-Time Pad Prototype Generator For Localising Cloud Security, Paul Tobin, Lee Tobin, Michael Mckeever, Jonathan Blackledge Jun 2017

A Hardware One-Time Pad Prototype Generator For Localising Cloud Security, Paul Tobin, Lee Tobin, Michael Mckeever, Jonathan Blackledge

Conference papers

In this paper, we examine a system for encrypting data before storing in the Cloud. Adopting this system gives excellent security to stored data and complete control for accessing data by the client at different locations. The motivation for developing this personal encryption came about because of poor Cloud security and doubts over the safety of public encryption algorithms which might contain backdoors. However, side-channel attacks and other unwanted third-party interventions in Cloud security, probably contribute more to the poor security record history. These factors led to the development of a prototype for personalising security locally which defeats cryptanalysis. The …


Electronic And Magnetic Properties Of Two-Dimensional Nanomaterials Beyond Graphene And Their Gas Sensing Applications: Silicene, Germanene, And Boron Carbide, Sadegh Mehdi Aghaei Jun 2017

Electronic And Magnetic Properties Of Two-Dimensional Nanomaterials Beyond Graphene And Their Gas Sensing Applications: Silicene, Germanene, And Boron Carbide, Sadegh Mehdi Aghaei

FIU Electronic Theses and Dissertations

The popularity of graphene owing to its unique properties has triggered huge interest in other two-dimensional (2D) nanomaterials. Among them, silicene shows considerable promise for electronic devices due to the expected compatibility with silicon electronics. However, the high-end potential application of silicene in electronic devices is limited owing to the lack of an energy band gap. Hence, the principal objective of this research is to tune the electronic and magnetic properties of silicene related nanomaterials through first-principles models.

I first explored the impact of edge functionalization and doping on the stabilities, electronic, and magnetic properties of silicene nanoribbons (SiNRs) and …


Chaos-Based Cryptography For Cloud Computing, Paul Tobin, Lee Tobin, Michael Mckeever, Jonathan Blackledge Jun 2017

Chaos-Based Cryptography For Cloud Computing, Paul Tobin, Lee Tobin, Michael Mckeever, Jonathan Blackledge

Conference papers

Cloud computing and poor security issues have quadrupled over the last six years and with the alleged presence of backdoors in common encryption ciphers, has created a need for personalising the encryption process by the client. In 2007, two Microsoft employees gave a presentation ``On the Possibility of a backdoor in the NIST SP800-90 Dual Elliptic Curve Pseudo Random Number Generators'' and was linked in 2013 by the New York Times with notes leaked by Edward Snowden. This confirmed backdoors were placed, allegedly, in a number of encryption systems by the National Security Agency, which if true creates an urgent …


1+N Network Protection For Mesh Networks: Network Coding-Based Protection Using P-Cycles And Protection Paths, Ahmed Kamal, Aditya Ramamoorthy May 2017

1+N Network Protection For Mesh Networks: Network Coding-Based Protection Using P-Cycles And Protection Paths, Ahmed Kamal, Aditya Ramamoorthy

Ahmed Kamal

A method and system for providing protection of multiple communication sessions using the bandwidth resources on the order of those required to protect a single communication session. This is facilitated through the use of network coding on a protection cycle. Transmissions from all connections are coded together using network coding and transmitted in two different directions on a cycle, so that the signal can be recovered by the receiver in two ways: on the working path, and on the protection (cycle) path.


An Exact Analysis For Four-Order Acousto-Optic Bragg Diffraction Which Incorporates Both Incident Light Angle And Sound Frequency Dependencies, Adeyinka Sunday Ademola May 2017

An Exact Analysis For Four-Order Acousto-Optic Bragg Diffraction Which Incorporates Both Incident Light Angle And Sound Frequency Dependencies, Adeyinka Sunday Ademola

Electrical Engineering Theses

This thesis extends the prior work which produced an exact solution to the four-order acousto-optic (AO) Bragg cell with assumed fixed center frequency and with exact Bragg angle incident light. The extension predicts the model that incorporates the dependencies of both the input angle of light and the sound frequency. Specifically, a generalized 4th order linear differential equation (DE), is developed from a simultaneous analysis of four coupled AO system of DEs. Through standard methods, the characteristic roots, which requires solving a quartic equation, is produced. Subsequently, a derived system of homogeneous solutions, which absorbs the roots obtained using …


Development Of A Low Cost Biosensing Platform For Highly Sensitive And Specific On-Site Detection Of Pathogens And Infections, Cheng Cheng May 2017

Development Of A Low Cost Biosensing Platform For Highly Sensitive And Specific On-Site Detection Of Pathogens And Infections, Cheng Cheng

Doctoral Dissertations

A highly sensitive, specific, real time, and field-deployable surveillance tool is critical to the control of pathogens and infections, as well as ecological impact of chemicals exposure. This work investigates the development of a low cost biosensing platform that can be used for viral disease diagnosis and chemical detection. The sensing mechanism is known as AC electrokinetics (ACEK) capacitive sensing. By applying an inhomogeneous AC electric field on sensor electrodes, positive dielectrophoresis is induced to accelerate the travel of analytes. The same applied AC signal also directly measures the capture of target by the probe on sensor surface. The realized …


The Effect Of Power Supply Ramp Time On Sram Puf's, Abdelrahman T. Elshafiey Mr. Apr 2017

The Effect Of Power Supply Ramp Time On Sram Puf's, Abdelrahman T. Elshafiey Mr.

Electrical and Computer Engineering ETDs

Physical unclonable functions (PUFs) are security primitives that exploit the device mismatches. PUFs are a promising solution for hardware cryptography and key storage. They are used in many security applications including identification, authentication and key generation. SRAM is one of the popular implementations of PUFs. SRAM PUFs offer the advantage, over other PUF constructions, of reusing resources (memories) that already exist in many designs.

In this thesis, for the first time, it is demonstrated that the start-up value of an SRAM PUF could be different depending on the SRAM power supply rising time. An analytical model has been developed to …


Design Verification Of Mems Resonators With Fem Simulator, Joshua Wiswell Apr 2017

Design Verification Of Mems Resonators With Fem Simulator, Joshua Wiswell

Thinking Matters Symposium Archive

The purpose of this project was to use COMSOL, an advanced FEM (finite element modeling) software, to analyze a Coupled Thermal Resonator. This Coupled Thermal Resonator was previously constructed in L-Edit, but when analyzed in COMSOL, it produced undesirable results. This project focused on improving the design and model of the Resonator to improve simulation results and evaluating the actual response of the MEMS device to determine if simulated results were accurate for the actual device. Many different factors may have contributed to producing the double peak seen in the simulation, including the weak coupling between the two resonators. These …


The Impact Of Quantum Size Effects On Thermoelectric Performance In Semiconductor Nanostructures, Adithya Kommini Mar 2017

The Impact Of Quantum Size Effects On Thermoelectric Performance In Semiconductor Nanostructures, Adithya Kommini

Masters Theses

An increasing need for effective thermal sensors, together with dwindling energy resources, have created renewed interests in thermoelectric (TE), or solid-state, energy conversion and refrigeration using semiconductor-based nanostructures. Effective control of electron and phonon transport due to confinement, interface, and quantum effects has made nanostructures a good way to achieve more efficient thermoelectric energy conversion. This thesis studies the two well-known approaches: confinement and energy filtering, and implements improvements to achieve higher thermoelectric performance. The effect of confinement is evaluated using a 2D material with a gate and utilizing the features in the density of states. In addition to that, …


Real-Time Internal Temperature Estimation And Health Monitoring For Igbt Modules, Ze Wang Jan 2017

Real-Time Internal Temperature Estimation And Health Monitoring For Igbt Modules, Ze Wang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Field experiences have demonstrated that power semiconductor devices, such as insulated-gate bipolar transistors (IGBTs), are among the most fragile components of power electronic converters. Thermomechanical stresses produced by temperature variations during operational and environmental loads are the major causes of IGBT degradation. As the devices are often operated under complex working conditions, temperature variations and the associated damage are difficult to predict during the converter design stage. A promising approach—online health monitoring and prognosis for power semiconductor devices—that can avoid device failure and effectively schedule maintenance has attracted much interest.

This dissertation research focused on real-time accurate internal temperature estimation …


Optical Spectroscopy Of Wide Bandgap Semiconductor Heterostructures And Group-Iv Alloy Quantum Dots, Tanner A. Nakagawara Jan 2017

Optical Spectroscopy Of Wide Bandgap Semiconductor Heterostructures And Group-Iv Alloy Quantum Dots, Tanner A. Nakagawara

Theses and Dissertations

Efficient and robust blue InGaN multiple quantum well (MQW) light emitters have become ubiquitous; however, they still have unattained theoretical potential. It is widely accepted that “localization” of carriers due to indium fluctuations theoretically enhance their efficiency by moderating defect-associated nonradiative recombination. To help develop a complete understanding of localization effects on carrier dynamics, this thesis explores degree of localization in InGaN MQWs and its dependence on well thickness and number of wells, through temperature and power dependent photoluminescence measurements. Additionally, silicon-compatible, nontoxic, colloidally synthesizable 2-5 nm Ge1-xSnx alloy quantum-dots (QDs) are explored for potential visible to …