Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Graduate Theses and Dissertations

Antenna

Articles 1 - 2 of 2

Full-Text Articles in Electromagnetics and Photonics

Fabrication And Measurement Of Lt-Gaas Photoconductive Antennas And Arrays, Zachary Paul Uttley Aug 2023

Fabrication And Measurement Of Lt-Gaas Photoconductive Antennas And Arrays, Zachary Paul Uttley

Graduate Theses and Dissertations

This thesis presents the fabrication and measurement of LT-GaAs based terahertz (THz) photo conductive antennas (PCAs) and arrays. The LT-GaAs THz PCAs are fabricated to serve as reference devices to new 2D material black phosphorous (BP) based THz PCAs. The LT-GaAs and BP devices have identical metallic electrodes, allowing for a comparison of emitted THz intensity and bandwidth. All PCAs have been measured using an open bench pulsed time-domain spectroscopy (TDS) system with a usable bandwidth from 0.1-4 THz, pumped with a 780nm Ti:Sapphire femtosecond laser. The results have shown LT-GaAs devices outperforming BP devices in signal amplitude and bandwidth …


Design, Fabrication And Measurement Of A Plasmonic Enhanced Terahertz Photoconductive Antenna, Nathan Matthias Burford Dec 2016

Design, Fabrication And Measurement Of A Plasmonic Enhanced Terahertz Photoconductive Antenna, Nathan Matthias Burford

Graduate Theses and Dissertations

Generation of broadband terahertz (THz) pulses from ultrafast photoconductive antennas (PCAs) is an attractive method for THz spectroscopy and imaging. This provides a wide frequency bandwidth (0.1-4 THz) as well as the straightforward recovery of both the magnitude and phase of the transmitted and/or reflected signals. The achieved output THz power is low, approximately a few microwatts. This is due to the poor conversion of the femtosecond laser used as the optical pump to useable current inside the antenna semiconducting material. The majority of THz power comes from the photocarriers generated within ~ 100 nm distance from the antenna electrodes. …