Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Electromagnetics and Photonics

Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke Aug 2022

Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke

Graduate Theses and Dissertations

A novel controlled phase gate for photonic quantum computing is proposed by exploiting the powerful nonlinear optical responses of atomically thin transition metal dichalcogenides (TMDs) and it is shown that such a gate could elicit a π-rad phase shift in the outgoing electric field only in the case of two incident photons and no other cases. Firstly, the motivation for such a gate is developed and then the implementation of monolayer TMDs is presented as a solution to previous realization challenges. The single-mode case of incident photons upon a TMD is derived and is then used to constrain the more …


Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu Dec 2021

Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu

Graduate Theses and Dissertations

Since the early 2000s heavy-metal-free quantum dots (QDs) such as CuInS2/ZnS have attempted to replace CdSe, their heavy-metal-containing counterparts. CuInS2/ZnS is synthesized in a two-step process that involves the fabrication of CuInS2 (CIS) nanocrystals (NCs) followed by the addition of zinc precursors. Instead of the usual core/shell architecture often exhibited by binary QDs, coating CIS QDs results in alloyed and/or partially alloyed cation-exchange (CATEX) QDs. The effect that zinc has on the properties of CIS NCs was studied by incorporating zinc during the first step of the synthesis. Different In:Cu:Zn ratios were employed in this study, maintaining a constant 4:1 …


Investigation Of Optical And Structural Properties Of Gesn Heterostructures, Oluwatobi Gabriel Olorunsola Dec 2021

Investigation Of Optical And Structural Properties Of Gesn Heterostructures, Oluwatobi Gabriel Olorunsola

Graduate Theses and Dissertations

Silicon (Si)-based optoelectronics have gained traction due to its primed versatility at developing light-based technologies. Si, however, features indirect bandgap characteristics and suffers relegated optical properties compared to its III-V counterparts. III-Vs have also been hybridized to Si platforms but the resulting technologies are expensive and incompatible with standard complementary-metal-oxide-semiconductor processes. Germanium (Ge), on the other hand, have been engineered to behave like direct bandgap material through tensile strain interventions but are well short of attaining extensive wavelength coverage. To create a competitive material that evades these challenges, transitional amounts of Sn can be incorporated into Ge matrix to form …


Distributed Modeling Approach For Electrical And Thermal Analysis Of High-Frequency Transistors, Amirreza Ghadimi Avval Jul 2021

Distributed Modeling Approach For Electrical And Thermal Analysis Of High-Frequency Transistors, Amirreza Ghadimi Avval

Graduate Theses and Dissertations

The research conducted in this dissertation is focused on developing modeling approaches for analyzing high-frequency transistors and present solutions for optimizing the device output power and gain. First, a literature review of different transistor types utilized in high-frequency regions is conducted and gallium nitride high electron mobility transistor is identified as the promising device for these bands. Different structural configurations and operating modes of these transistors are explained, and their applications are discussed. Equivalent circuit models and physics-based models are also introduced and their limitations for analyzing the small-signal and large-signal behavior of these devices are explained. Next, a model …


Fabrication And Characterization Of Photodetector Devices Based On Nanostructured Materials: Graphene And Colloidal Nanocrystals, Wafaa Gebril Jul 2021

Fabrication And Characterization Of Photodetector Devices Based On Nanostructured Materials: Graphene And Colloidal Nanocrystals, Wafaa Gebril

Graduate Theses and Dissertations

Photodetectors are devices that capture light signals and convert them into electrical signals. High performance photodetectors are in demand in a variety of applications, such as optical communication, security, and environmental monitoring. Among many appealing nanomaterials for novel photodetection devices, graphene and semiconductor colloidal nanocrystals are promising candidates because of their desirable and unique properties compared to conventional materials.

Photodetector devices based on different types of nanostructured materials including graphene and colloidal nanocrystals were investigated. First, graphene layers were mechanically exfoliated and characterized for device fabrication. Self-powered few layers graphene phototransistors were studied. At zero drain voltage bias and room …


Characterization Of Gesn Semiconductors For Optoelectronic Devices, Hryhorii Stanchu May 2021

Characterization Of Gesn Semiconductors For Optoelectronic Devices, Hryhorii Stanchu

Graduate Theses and Dissertations

Germanium-tin alloys with Sn compositions higher than 8 at. % to 10 at. % have recently attracted significant interest as a group IV semiconductor that is ideal for active photonics on a Si substrate. The interest is due to the fact that while at a few percent of Sn, GeSn is an indirect bandgap semiconductor, at about 8 to 10 at. % Sn, GeSn transitions to a direct bandgap semiconductor. This is at first surprising since the solid solubility of Sn in Ge under equilibrium growth conditions is limited to only about 1 at. %. However, under non-equilibrium growth conditions, …


Si-Based Germanium Tin Photodetectors For Infrared Imaging And High-Speed Detection, Huong Tran May 2021

Si-Based Germanium Tin Photodetectors For Infrared Imaging And High-Speed Detection, Huong Tran

Graduate Theses and Dissertations

Infrared (IR) radiation spans the wavelengths of the windows: (1) near-IR region ranging from 0.8 to 1.0 μm, (2) shortwave IR (SWIR) ranging from 1.0 to 3.0 μm, (3) mid-wave IR (MWIR) region covering from 3.0 to 5.0 μm, (4) longwave IR (LWIR) spanning from 8.0 to 12.0 μm, and (5) very longwave IR extending beyond 12.0 μm. The MWIR and LWIR regions are important for night vision in the military, and since the atmosphere does not absorb at these wavelengths, they are also used for free-space communications and astronomy. Automotive and defect detection in the food industry and electronic …


Fourier Transform Infrared Spectroscopy For The Measurement Of Gesn/(Si)Gesn, Solomon Opeyemi Ojo Dec 2020

Fourier Transform Infrared Spectroscopy For The Measurement Of Gesn/(Si)Gesn, Solomon Opeyemi Ojo

Graduate Theses and Dissertations

Photoluminescence (PL) and Electroluminescence (EL) characterization techniques are important tools for studying the optical and electrical properties of (Si)GeSn. Light emission from these PL and EL measurements provides relevant information on material quality, bandgap energy, current density, and device efficiency. Prior to this work, the in-house PL set-up of this lab which involves the use of a commercially-obtained dispersive spectrometer was used for characterizing both GeSn thin film and fabricated devices, but these measurements were limited by issues bordering on low spectral resolution, spectral artifacts, and poor signal-to-noise ratio (SNR) thereby resulting in the possible loss of vital information and …


Growth Of Indium Nitride Quantum Dots By Molecular Beam Epitaxy, Steven P. Minor Aug 2019

Growth Of Indium Nitride Quantum Dots By Molecular Beam Epitaxy, Steven P. Minor

Graduate Theses and Dissertations

Over the last decade, the evolution of the global consciousness in response to decreasing environmental conditions from global warming and pollution has led to an outcry for finding new alternative/clean methods for harvesting energy and determining ways to minimize energy consumption. III-nitride materials are of interest for optoelectronic and electronic device applications such as high efficiency solar cells, solid state lighting (LEDs), and blue laser (Blu-ray Technology) applications. The wide range of direct band gaps covered by its alloys (0.7eV-6.2eV) best illustrates the versatility of III-nitride materials. This wide range has enabled applications extending from the ultraviolet to the near …


Growth And Characterization Of Silicon-Germanium-Tin Semiconductors For Future Nanophotonics Devices, Bader Saad Alharthi Dec 2018

Growth And Characterization Of Silicon-Germanium-Tin Semiconductors For Future Nanophotonics Devices, Bader Saad Alharthi

Graduate Theses and Dissertations

The bright future of silicon (Si) photonics has attracted research interest worldwide. The ultimate goal of this growing field is to develop a group IV based Si foundries that integrate Si-photonics with the current complementary metal–oxide–semiconductor (CMOS) on a single chip for mid-infrared optoelectronics and high speed devices. Even though group IV was used in light detection, such as photoconductors, it is still cannot compete with III-V semiconductors for light generation. This is because most of the group IV elements, such as Si and germanium (Ge), are indirect bandgap materials. Nevertheless, Ge and Si attracted industry attention because they are …


Growth And Behaviors Of Inn/Gan Multiple Quantum Wells By Plasma-Assisted Molecular Beam Epitaxy, Chen Li Dec 2018

Growth And Behaviors Of Inn/Gan Multiple Quantum Wells By Plasma-Assisted Molecular Beam Epitaxy, Chen Li

Graduate Theses and Dissertations

Fully realizing the potential of InGaN semiconductors requires high quality materials with arbitrary In-content. To this date the growth of In-rich InGaN films is still challenging since it suffers from the low growth temperatures and many detrimental alloying problems. InN/GaN multiple quantum wells (MQWs) and super lattices (SLs) are expected to be promising alternatives to random InGaN alloys since in principle they can achieve the equivalent band gap of InGaN random alloys with arbitrarily high In-content and at the same time bypass many growth difficulties.

This dissertation focuses on studying the growth mechanisms, structural properties and energy structures of InN/GaN …


Modeling And Simulation Of Iii-Nitride-Based Solar Cells Using Nextnano®, Malak Refaei Dec 2017

Modeling And Simulation Of Iii-Nitride-Based Solar Cells Using Nextnano®, Malak Refaei

Graduate Theses and Dissertations

Nextnano³ software is a well-known package for simulating semiconductor band-structures at the nanoscale and predicting the general electronic structure. In this work, it is further demonstrated as a viable tool for the simulation of III-nitride solar cells. In order to prove this feasibility, the generally accepted solar cell simulation package, PC1D, was chosen for comparison. To critique the results from both PC1D and Nextnano3, the fundamental drift-diffusion equations were used to calculate the performance of a simple p-n homojunction solar cell device analytically. Silicon was picked as the material for this comparison between the outputs of the two simulators as …


Investigation Of Fes2 Nanoparticles For Use In Optoelectronic And Thermoelectric Applications, Rick Tefal Eyi Nkoghe May 2017

Investigation Of Fes2 Nanoparticles For Use In Optoelectronic And Thermoelectric Applications, Rick Tefal Eyi Nkoghe

Graduate Theses and Dissertations

Iron pyrite (FeS2) is the most abundant sulfide material on earth. This material has been widely investigated by researchers because of its optical properties. However, it has been difficult to produce High efficiency FeS2 based solar cells. This is due to many different impurities that arise when making the materials. The ability to synthesize pure pyrite FeS2 material is therefore critical for applications.

Pure Iron pyrite nanocrystals were synthesized using hot injection by mixing sulfur with an iron precursor in the presence of an amine. To improve the stability, shorter ligands replaced the native amines ligands. The stability of the …


Investigation Of The Optical Properties Of Pbse/Pbx Nanocrystals For Photodetector Applications, Haley Ann Morris Dec 2016

Investigation Of The Optical Properties Of Pbse/Pbx Nanocrystals For Photodetector Applications, Haley Ann Morris

Graduate Theses and Dissertations

Lead selenide and lead selenide/lead sulfide core/shell nanocrystals were investigated for use in near infrared photodetectors. A colloidal synthesis method was used for both the core and core/shell configurations. The lead sulfide shell was examined in order to mitigate oxidation of the nanoparticle surface. Absorbance and photoluminescence spectra were measured at room temperature and 77 K, respectively. Transmission electron microscopy images were also obtained to confirm crystallography and size. Bulk lead selenide was simulated in WIEN2k utilizing the linear-augmented plane wave method of solving density functional theory to better understand the electronic structure of PbSe. The crystal structure, electron density, …


Investigation Of Optical Properties Of Zinc Oxide Photodetector, Tyler Chism May 2016

Investigation Of Optical Properties Of Zinc Oxide Photodetector, Tyler Chism

Graduate Theses and Dissertations

UV photodetection devices have many important applications for uses in biological detection, gas sensing, weaponry detection, fire detection, chemical analysis, and many others. Today’s photodetectors often utilize semiconductors such as GaAs to achieve high responsivity and sensitivity. Zinc oxide, unlike many other semiconductors, is cheap, abundant, non-toxic, and easy to grow different morphologies at the micro and nano scale. With the proliferation of these devices also comes the impending need to further study optics and photonics in relation to phononics and plasmonics, and the general principles underlying the interaction of photons with solid state matter and, specifically, semiconductors. For this …