Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Electromagnetics and Photonics

Interstitial Silicon Ions In Rutile Tio2 Crystals, Eric M. Golden, Nancy C. Giles, Shan Yang, Larry E. Halliburton Apr 2015

Interstitial Silicon Ions In Rutile Tio2 Crystals, Eric M. Golden, Nancy C. Giles, Shan Yang, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) is used to identify a new and unique photoactive silicon-related point defect in single crystals of rutile TiO2. The importance of this defect lies in its assignment to interstitial silicon ions and the unexpected establishment of silicon impurities as a major hole trap in TiO2. Principal g values of this new S=1/2 center are 1.9159, 1.9377, and 1.9668 with principal axes along the [¯110],[001], and [110] directions, respectively. Hyperfine structure in the EPR spectrum shows the unpaired spin interacting equally with two Ti nuclei and unequally with two Si nuclei. These silicon …


Tunable Fano Resonances Based On Two-Beam Interference In Microring Resonator, Ting Hu, Ping Yu, Chen Qui, Huiye Qui, Fan Wang, Mei Yang, Xiaoqing Jiang, Hui Yu, Jianyi Yang Jan 2013

Tunable Fano Resonances Based On Two-Beam Interference In Microring Resonator, Ting Hu, Ping Yu, Chen Qui, Huiye Qui, Fan Wang, Mei Yang, Xiaoqing Jiang, Hui Yu, Jianyi Yang

Electrical & Computer Engineering Faculty Research

In this paper, a resonant system is demonstrated on silicon-on-insulator wafer to achieve tunable Fano resonances. In this system, the Fano resonance originates from the interference of two beams resonant in the microring resonator. The shapes of the Fano resonances are tunable through controlling the phase difference of the two beams. Both large slope and high extinctionratio (ER) are obtained when the phase difference is 0.5π or 1.5π. Experimental results show that Fano resonances with steep slope and ER over 20 dB are achieved in the whole free spectral range by controlling the microheaters to meet the phase condition.


In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery Nov 2011

In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, in-situ ellipsometry and electroanalytical investigations of two electrochemical processes are reported: including the formation of anodically grown silicon dioxide and the intercalation of lithium into silicon. Analysis of the ellipsometry data shows that the anodically grown silicon dioxide layer is uniform and has similar properties as thermally grown silicon dioxide. The lithium-ion intercalation data reveals non-uniform thin film formation, which requires further studies and development of appropriate ellipsometric optical models.

Advisers: Eva Schubert and Mathias Schubert


Selective Area Deposited Blue Gan-Ingan Multiple-Quantum Well Light Emitting Diodes Over Silicon Substrates, J. W. Yang, A. Lunev, Grigory Simin, A. Chitnis, M. Shatalov, M. Asif Khan, Joseph E. Van Nostrand, R. Gaska Jan 2000

Selective Area Deposited Blue Gan-Ingan Multiple-Quantum Well Light Emitting Diodes Over Silicon Substrates, J. W. Yang, A. Lunev, Grigory Simin, A. Chitnis, M. Shatalov, M. Asif Khan, Joseph E. Van Nostrand, R. Gaska

Faculty Publications

We report on fabrication and characterization of blue GaN–InGaN multi-quantum well (MQW)light-emitting diodes(LEDs) over (111) silicon substrates. Device epilayers were fabricated using unique combination of molecular beam epitaxy and low-pressure metalorganic chemical vapor depositiongrowth procedure in selective areas defined by openings in a SiO2mask over the substrates. This selective area deposition procedure in principle can produce multicolor devices using a very simple fabrication procedure. The LEDs had a peak emission wavelength of 465 nm with a full width at half maximum of 40 nm. We also present the spectral emission data with the diodes operating up to 250 …