Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Electromagnetics and Photonics

Refractory Plasmonics With Titanium Nitride: Broadband Metamaterial Absorber, W Li, U. Guler, N. Kinsey, G. Naik, A. Boltasseva, J. Guan, V Shalaev, A. Kildishev Oct 2014

Refractory Plasmonics With Titanium Nitride: Broadband Metamaterial Absorber, W Li, U. Guler, N. Kinsey, G. Naik, A. Boltasseva, J. Guan, V Shalaev, A. Kildishev

U. Guler

A high-temperature stable broadband plasmonic absorber is designed, fabricated, and optically characterized. A broadband absorber with an average high absorption of 95% and a total thickness of 240 nm is fabricated, using a refractory plasmonic material, titanium nitride. This absorber integrates both the plasmonic resonances and the dielectric-like loss. It opens a path for the interesting applications such as solar thermophotovoltaics and optical circuits.


Inferring The Global Cosmic Dust Influx To The Earth’S Atmosphere From Lidar Observations Of The Vertical Flux Of Mesospheric Na, Chester S. Gardner, Alan Z. Liu, Dan Marsh, Wuhu Feng, John Plane Aug 2014

Inferring The Global Cosmic Dust Influx To The Earth’S Atmosphere From Lidar Observations Of The Vertical Flux Of Mesospheric Na, Chester S. Gardner, Alan Z. Liu, Dan Marsh, Wuhu Feng, John Plane

Alan Z Liu

Estimates of the global influx of cosmic dust are highly uncertain, ranging from 0.4110 t/d. All
meteoric debris that enters the Earths atmosphere is eventually transported to the surface. The downward
fluxes of meteoric metals like mesospheric Na and Fe, in the region below where they are vaporized and
where the majority of these species are still in atomic form, are equal to their meteoric ablation influxes,
which in turn, are proportional to the total cosmic dust influx. Doppler lidar measurements of mesospheric Na
fluxes made throughout the …


Refractory Plasmonics, Urcan Guler, Alexandra Boltasseva, Vladimir M. Shalaev Apr 2014

Refractory Plasmonics, Urcan Guler, Alexandra Boltasseva, Vladimir M. Shalaev

U. Guler

Refractory materials are defined as those with a high melting point and chemical stability at temperatures above 2000°C. Applications based on refractory materials, usually nonmetallic, span a wide range of areas including industrial furnaces, space shuttle shields, and semiconductor technology. Metals have also been studied as refractories; however, the optical properties of those metals that have been tried for high-temperature applications were not good enough to be used in plasmonic applications (these are almost entirely based on noble metals, which are not good refractories). Refractory materials that exhibit reasonably good plasmonic behavior would undoubtedly enable new devices and boost such …


Flicker Noise In Yba₂Cu₃O₇₋Δ Bicrystal Grain-Boundary Junctions In Weak Magnetic-Fields, Charles Surya, N. E. Israeloff, A. Widom, R. Seed, C. Vittoria Jan 2014

Flicker Noise In Yba₂Cu₃O₇₋Δ Bicrystal Grain-Boundary Junctions In Weak Magnetic-Fields, Charles Surya, N. E. Israeloff, A. Widom, R. Seed, C. Vittoria

Nathan Israeloff

Flicker noise in c-axis oriented long YBCO bicrystal grain boundary junctions was characterized as a function of temperature, biasing conditions, and magnetic field applied perpendicular to the a-b plane over a wide range of temperatures from 15 K to over 70 K. Aperiodic variations, as a function of magnetic field, were observed in both the junction voltages, V-J, and the flicker noise magnitude under constant current bias as the magnetic field was scanned from 0 to 8 G. The noise magnitudes were found to peak at the minima of V-J. Analyses of the field dependencies of the: magnitudes and the …