Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

Florida International University

Series

Discipline
Keyword
Publication Year

Articles 1 - 23 of 23

Full-Text Articles in Electromagnetics and Photonics

Novel Materials And Devices For Terahertz Detection And Emission For Sensing, Imaging And Communication, Naznin Akter Jun 2022

Novel Materials And Devices For Terahertz Detection And Emission For Sensing, Imaging And Communication, Naznin Akter

FIU Electronic Theses and Dissertations

Technical advancement is required to attain a high data transmission rate, which entails expanding beyond the currently available bandwidth and establishing a new standard for the highest data rates, which mandates a higher frequency range and larger bandwidth. The THz spectrum (0.1-10 THz) has been considered as an emerging next frontier for the future 5G and beyond technology. THz frequencies also offer unique characteristics, such as penetrating most dielectric materials like fabric, plastic, and leather, making them appealing for imaging and sensing applications. Therefore, employing a high-power room temperature, tunable THz emitters, and a high responsivity THz detector is essential. …


Deployable Tightly Coupled Dipole Arrays For Small Satellites, Maxence Carvalho Jun 2021

Deployable Tightly Coupled Dipole Arrays For Small Satellites, Maxence Carvalho

FIU Electronic Theses and Dissertations

This dissertation presents the theory, design, fabrication, and verification of several critical components for a novel class of origami-based and deployable Tightly Coupled Dipole Arrays (TCDAs) suitable for small satellite applications. This work introduces a new approach to enhance the bandwidth of TCDAs by incorporating a semi-resistive Frequency Selective Surface (FSS) network within the substrate. The integration of this FSS network within a dual-polarized TCDA led to an increased impedance bandwidth of 28:1 from 0.20 GHz to 5.6 GHz. Concurrently, losses above 2.5 GHz are reduced to achieve a radiation efficiency of 83% on average. A major component of the …


Novel High Isolation Antennas For Simultaneous Transmit And Receive (Star) Applications, Alexander Hovsepian Dec 2020

Novel High Isolation Antennas For Simultaneous Transmit And Receive (Star) Applications, Alexander Hovsepian

FIU Electronic Theses and Dissertations

Radio frequency (RF) spectrum congestion is a major challenge for the growing need of wireless bandwidth. Notably, in 2015, the Federal Communications Commission (FCC) auctioned just 65 MHz (a bandwidth smaller than that used for WiFi) for more than $40 billion, indicating the high value of the microwave spectrum. Current radios use one-half of their bandwidth resource for transmission, and the other half for reception. Therefore, by enabling radios to transmit and receive across their entire bandwidth allocation, spectral efficiency is doubled. Concurrently, data rates for wireless links also double. This technology leads to a new class of radios and …


Engineering Electromagnetic Systems For Next-Generation Brain-Machine Interface, Brayan Ricardo Navarrete Nov 2020

Engineering Electromagnetic Systems For Next-Generation Brain-Machine Interface, Brayan Ricardo Navarrete

FIU Electronic Theses and Dissertations

MagnetoElectric Nanoparticles (MENPs) are known to be a powerful tool for a broad range of applications spanning from medicine to energy-efficient electronics. MENPs allow to couple intrinsic electric fields in the nervous system with externally controlled magnetic fields. This thesis exploited MENPs to achieve contactless brain-machine interface (BMIs). Special electromagnetic devices were engineered for controlling the MENPs’ magnetoelectric effect to enable stimulation and recording. The most important engineering breakthroughs of the study are summarized below.

(I) Metastable Physics to Localize Nanoparticles: One of the main challenges is to localize the nanoparticles at any selected site(s) in the brain. The fundamental …


Structural Health Monitoring Of Pipelines In Radioactive Environments Through Acoustic Sensing And Machine Learning, Michael Thompson Jul 2020

Structural Health Monitoring Of Pipelines In Radioactive Environments Through Acoustic Sensing And Machine Learning, Michael Thompson

FIU Electronic Theses and Dissertations

Structural health monitoring (SHM) comprises multiple methodologies for the detection and characterization of stress, damage, and aberrations in engineering structures and equipment. Although, standard commercial engineering operations may freely adopt new technology into everyday operations, the nuclear industry is slowed down by tight governmental regulations and extremely harsh environments. This work aims to investigate and evaluate different sensor systems for real-time structural health monitoring of piping systems and develop a novel machine learning model to detect anomalies from the sensor data. The novelty of the current work lies in the development of an LSTM-autoencoder neural network to automate anomaly detection …


Nanoelectronic Applications Of Magnetoelectric Nanostructures, Ping Wang Jun 2020

Nanoelectronic Applications Of Magnetoelectric Nanostructures, Ping Wang

FIU Electronic Theses and Dissertations

The greatly increased interest in magnetoelectric materials over the last decade is due to their potential to enable next-generation multifunctional nanostructures required for revolutionizing applications spanning from energy-efficient information processing to medicine. Magnetoelectric nanomaterials offer a unique way to use a voltage to control the electron spin and, reciprocally, to use remotely controlled magnetic fields to access local intrinsic electric fields. The magnetoelectric coefficient is the most critical indicator for the magnetoelectric coupling in these nanostructures. To realize the immense potential of these materials, it is necessary to maximize the coefficient. Therefore, the goal of this PhD thesis study was …


Novel Passive Rfid Temperature Sensors Using Liquid Crystal Elastomers, Yousuf Shafiq Mar 2020

Novel Passive Rfid Temperature Sensors Using Liquid Crystal Elastomers, Yousuf Shafiq

FIU Electronic Theses and Dissertations

When transporting perishable foods in the Cold Supply Chain (CSC), it is essential that they are maintained in a controlled temperature environment (typically from -1° to 10°C) to minimize spoilage. Fresh-food products, such as, meats, fruits, and vegetables, experience discoloration and loss of nutrients when exposed to high-temperatures. Also, medicines, such as, insulin and vaccines, can lose potency if they are not maintained at the appropriate temperatures. Consequently, the CSC is critical to the growth of global trade and to the worldwide availability of food and health supplies; especially, when considering that the retail food market consists mostly (approximately 65%) …


Low Cost Scanning Arrays, Matilda Gabriela Livadaru Jun 2018

Low Cost Scanning Arrays, Matilda Gabriela Livadaru

FIU Electronic Theses and Dissertations

Over the past decades, phased arrays have played a significant role in the development of modern radar and communication systems. The availability of printed circuit technology and ease of integration with microwave components, as well as the development of low profile and low weight approaches, have also played an important role in their conformal adaptation. However, fabrication costs remain prohibitive for many emergent platforms, including 5G base stations and autonomous vehicles, when compared to a conventional mechanically steered passive array. Therefore, cost reductions in the fabrication and integration of modern phased arrays are essential to their adaptation for many upcoming …


Reconfigurable Antennas Using Liquid Crystalline Elastomers, John Gibson Mar 2018

Reconfigurable Antennas Using Liquid Crystalline Elastomers, John Gibson

FIU Electronic Theses and Dissertations

This dissertation demonstrates the design of reversibly self-morphing novel liquid crystalline elastomer (LCE) antennas that can dynamically change electromagnetic performance in response to temperature. This change in performance can be achieved by programming the shape change of stimuli-responsive (i.e., temperature-responsive) LCEs, and using these materials as substrates for reconfigurable antennas. Existing reconfigurable antennas rely on external circuitry such as Micro-Electro-Mechanical-Systems (MEMS) switches, pin diodes, and shape memory alloys (SMAs) to reconfigure their performance. Antennas using MEMS or diodes exhibit low efficiency due to the losses from these components. Also, antennas based on SMAs can change their performance only once as …


Origami Antennas For Novel Reconfigurable Communication Systems, Xueli Liu Mar 2018

Origami Antennas For Novel Reconfigurable Communication Systems, Xueli Liu

FIU Electronic Theses and Dissertations

Antennas play a crucial role in communication systems since they are the transmitting/receiving elements that transition information from guided transmission to open-space propagation. Antennas are used in many different applications such as aerospace communications, mobile phones, TVs and radios. Since the dimensions of antennas are usually physically proportional to the wavelength at their operating frequencies, it is important to develop large antennas and arrays that can be stowed compactly and easily deployed. Also, it is important to minimize the number of antennas on a platform by developing multifunctional antennas.

The first aim of this research is to develop new deployable, …


Novel Strongly Coupled Magnetic Resonant Systems, Daerhan Liu Mar 2018

Novel Strongly Coupled Magnetic Resonant Systems, Daerhan Liu

FIU Electronic Theses and Dissertations

Wireless power transfer (WPT) technologies have become important for our everyday life. The most commonly used near-field WPT method is inductive coupling, which suffers from low efficiency and small range. The Strongly Coupled Magnetic Resonance (SCMR) method was developed recently, and it can be used to wirelessly transfer power with higher efficiency over a longer distance than the inductive coupling method.

This dissertation develops new SCMR systems that have better performance compared to standard SCMR systems. Specifically, two new 3-D SCMR systems are designed to improve the angular misalignment sensitivity of WPT systems. Their power transfer efficiency for different angular …


Plasmonic Nanoplatforms For Biochemical Sensing And Medical Applications, Arash Ahmadivand Jan 2018

Plasmonic Nanoplatforms For Biochemical Sensing And Medical Applications, Arash Ahmadivand

FIU Electronic Theses and Dissertations

Plasmonics, the science of the excitation of surface plasmon polaritons (SPP) at the metal-dielectric interface under intense beam radiation, has been studied for its immense potential for developing numerous nanophotonic devices, optical circuits and lab-on-a-chip devices. The key feature, which makes the plasmonic structures promising is the ability to support strong resonances with different behaviors and tunable localized hotspots, excitable in a wide spectral range. Therefore, the fundamental understanding of light-matter interactions at subwavelength nanostructures and use of this understanding to tailor plasmonic nanostructures with the ability to sustain high-quality tunable resonant modes are essential toward the realization of highly …


Anomalous Properties Of Sub-10-Nm Magnetic Tunneling Junctions, Mark Stone Jan 2018

Anomalous Properties Of Sub-10-Nm Magnetic Tunneling Junctions, Mark Stone

FIU Electronic Theses and Dissertations

Magnetic Logic Devices have the advantage of non-volatility, radiation hardness, scalability down to the sub-10nm range, and three-dimensional (3D) integration capability. Despite these advantages, magnetic applications for information processing remain limited. The main stumbling block is the high energy required to switch information states in spin-based devices. Recently, the spin transfer torque (STT) effect has been introduced as a promising solution. STT based magnetic tunneling junctions (MTJs), use a spin polarized electric current to switch magnetic states. They are theorized to bring the switching energy down substantially. However, the switching current density remains in the order of 1 MA/cm2 in …


Origami Reconfigurable Electromagnetic Systems, Shun Yao Nov 2017

Origami Reconfigurable Electromagnetic Systems, Shun Yao

FIU Electronic Theses and Dissertations

With the ever-increasing demand for wireless communications, there is a great need for efficient designs of electromagnetic systems. Reconfigurable electromagnetic systems are very useful because such designs can provide multi-functionality and support different services. The geometrical topology of an electromagnetic element is very important as it determines the element’s RF performance characteristics. Origami geometries have significant advantages for launch-and-carry electromagnetic devices where devices need to fold in order to miniaturize their size during launch and unfold in order to operate after the platform has reached orbit.

This dissertation demonstrates a practical process for designing reconfigurable electromagnetic devices using origami structures. …


Technobiology Paradigm In Nanomedicine: Treating Cancer With Magnetoelectric Nanoparticles, Emmanuel Stimphil Nov 2017

Technobiology Paradigm In Nanomedicine: Treating Cancer With Magnetoelectric Nanoparticles, Emmanuel Stimphil

FIU Electronic Theses and Dissertations

Today, cancer is the world’s deadliest disease. Despite significant progress to find a cure, especially over the last decade, with immunotherapy rapidly becoming the state of the art, major open questions remain. Each successful therapy is not only limited to a few cancers but also has relatively low specificity to target cancer cells; although cancer cells can indeed be eradicated, many normal cells are sacrificed as collateral damage. To fill this gap, we have developed a class of multiferroic nanostructures known as magnetoelectric nanoparticles (MENs) that can be used to enable externally controlled high-specificity targeted delivery and release of therapeutic …


Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway Oct 2017

Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway

FIU Electronic Theses and Dissertations

A continuous increase in demands from the utility grid and traction applications have steered public attention toward the integration of energy storage (ES) and hybrid ES (HESS) solutions. Modern technologies are no longer limited to batteries, but can include supercapacitors (SC) and flywheel electromechanical ES well. However, insufficient control and algorithms to monitor these devices can result in a wide range of operational issues. A modern day control platform must have a deep understanding of the source. In this dissertation, specialized modular Energy Storage Management Controllers (ESMC) were developed to interface with a variety of ES devices. The EMSC provides …


Optimal And Miniaturized Strongly Coupled Magnetic Resonant Systems, Hao Hu Nov 2016

Optimal And Miniaturized Strongly Coupled Magnetic Resonant Systems, Hao Hu

FIU Electronic Theses and Dissertations

Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and …


Nanofabrication And Spectroscopy Of Magnetic Nanostructures Using A Focused Ion Beam, Ali Hadjikhani Jul 2016

Nanofabrication And Spectroscopy Of Magnetic Nanostructures Using A Focused Ion Beam, Ali Hadjikhani

FIU Electronic Theses and Dissertations

This research used a focused ion beam in order to fabricate record small nano-magnetic structures, investigate the properties of magnetic materials in the rarely studied range of nanometer size, and exploit their extraordinary characteristics in medicine and nano-electronics. This study consists of two parts: (i) Fabrication and study of record small magnetic tunnel junctions (ii) Introduction of a novel method for detection of magnetoelectric nanoparticles (MENs) in the tissue.

A key challenge in further scaling of CMOS devices is being able to perform non-volatile logic with near zero power consumption. Sub-10-nm nanomagnetic spin transfer torque (STT) magnetic tunneling junctions (MTJs) …


Sonochemical Synthesis Of Zinc Oxide Nanostructures For Sensing And Energy Harvesting, Phani Kiran Vabbina Jul 2016

Sonochemical Synthesis Of Zinc Oxide Nanostructures For Sensing And Energy Harvesting, Phani Kiran Vabbina

FIU Electronic Theses and Dissertations

Semiconductor nanostructures have attracted considerable research interest due to their unique physical and chemical properties at nanoscale which open new frontiers for applications in electronics and sensing. Zinc oxide nanostructures with a wide range of applications, especially in optoelectronic devices and bio sensing, have been the focus of research over the past few decades. However ZnO nanostructures have failed to penetrate the market as they were expected to, a few years ago. The two main reasons widely recognized as bottleneck for ZnO nanostructures are (1) Synthesis technique which is fast, economical, and environmentally benign which would allow the growth on …


Uniquely Identifiable Tamper-Evident Device Using Coupling Between Subwavelength Gratings, Ange Marie P. Fievre Mar 2015

Uniquely Identifiable Tamper-Evident Device Using Coupling Between Subwavelength Gratings, Ange Marie P. Fievre

FIU Electronic Theses and Dissertations

Reliability and sensitive information protection are critical aspects of integrated circuits. A novel technique using near-field evanescent wave coupling from two subwavelength gratings (SWGs), with the input laser source delivered through an optical fiber is presented for tamper evidence of electronic components. The first grating of the pair of coupled subwavelength gratings (CSWGs) was milled directly on the output facet of the silica fiber using focused ion beam (FIB) etching. The second grating was patterned using e-beam lithography and etched into a glass substrate using reactive ion etching (RIE). The slightest intrusion attempt would separate the CSWGs and eliminate near-field …


Optimization Of Wireless Power Transfer Via Magnetic Resonance In Different Media, Olutola Jonah Mar 2013

Optimization Of Wireless Power Transfer Via Magnetic Resonance In Different Media, Olutola Jonah

FIU Electronic Theses and Dissertations

A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless …


A Thermally Wavelength-Tunable Photonic Switch Based On Silicon Microring Resonator, Xuan Wang Nov 2009

A Thermally Wavelength-Tunable Photonic Switch Based On Silicon Microring Resonator, Xuan Wang

FIU Electronic Theses and Dissertations

Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a …


Effective Reconfigurable Antenna Designs To Enhance Performance And Enable Wireless Powering, Shishir S. Punjala Nov 2009

Effective Reconfigurable Antenna Designs To Enhance Performance And Enable Wireless Powering, Shishir S. Punjala

FIU Electronic Theses and Dissertations

With the increase in traffic on the internet, there is a greater demand for wireless mobile and ubiquitous applications. These applications need antennas that are not only broadband, but can also work in different frequency spectrums. Even though there is a greater demand for such applications, it is still imperative to conserve power. Thus, there is a need to design multi-broadband antennas that do not use a lot of power. Reconfigurable antennas can work in different frequency spectrums as well as conserve power. The current designs of reconfigurable antennas work only in one band. There is a need to design …