Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

Air Force Institute of Technology

Series

Discipline
Keyword
Publication Year
Publication

Articles 1 - 30 of 45

Full-Text Articles in Electromagnetics and Photonics

Directional Microwave Emission From Femtosecond-Laser Illuminated Linear Arrays Of Superconducting Rings, Thomas J. Bullard, Kyle Frische, Charlie Ebbing, Stephen J. Hageman, John Morrison, John Bulmer, Enam A. Chowdury, Michael L. Dexter, Timothy J. Haugan, Anil K. Patniak Dec 2023

Directional Microwave Emission From Femtosecond-Laser Illuminated Linear Arrays Of Superconducting Rings, Thomas J. Bullard, Kyle Frische, Charlie Ebbing, Stephen J. Hageman, John Morrison, John Bulmer, Enam A. Chowdury, Michael L. Dexter, Timothy J. Haugan, Anil K. Patniak

Faculty Publications

We examine the electromagnetic emission from two photo-illuminated linear arrays composed of inductively charged superconducting ring elements. The arrays are illuminated by an ultrafast infrared laser that triggers microwave broadband emission detected in the 1–26 GHz range. Based on constructive interference from the arrays a narrowing of the forward radiation lobe is observed with increasing element count and frequency demonstrating directed GHz emission. Results suggest that higher frequencies and a larger number of elements are achievable leading to a unique pulsed array emitter concept that can span frequencies from the microwave to the terahertz (THz) regime.


Evolution Of Coronal Magnetic Field Parameters During X5.4 Solar Flare, Seth H. Garland, Benjamin F. Akers, Vasyl B. Yurchyshyn, Robert D. Loper, Daniel J. Emmons Mar 2023

Evolution Of Coronal Magnetic Field Parameters During X5.4 Solar Flare, Seth H. Garland, Benjamin F. Akers, Vasyl B. Yurchyshyn, Robert D. Loper, Daniel J. Emmons

Faculty Publications

The coronal magnetic field over NOAA Active Region 11,429 during a X5.4 solar flare on 7 March 2012 is modeled using optimization based Non-Linear Force-Free Field extrapolation. Specifically, 3D magnetic fields were modeled for 11 timesteps using the 12-min cadence Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager photospheric vector magnetic field data, spanning a time period of 1 hour before through 1 hour after the start of the flare. Using the modeled coronal magnetic field data, seven different magnetic field parameters were calculated for 3 separate regions: areas with surface |Bz| ≥ 300 G, areas of flare brightening seen …


Magneto-Exothermic Catalytic Chemical Reaction Along A Curved Surface, Muhammad Ashraf, Uzma Ahmad, Saqib Zia, Rama S. R. Gorla, Amnah S. Al-Johani, Ilyas Khan, Mulugeta Andualem Jan 2022

Magneto-Exothermic Catalytic Chemical Reaction Along A Curved Surface, Muhammad Ashraf, Uzma Ahmad, Saqib Zia, Rama S. R. Gorla, Amnah S. Al-Johani, Ilyas Khan, Mulugeta Andualem

Faculty Publications

In the current study, the physical behavior of the boundary layer flows along a curved surface owing exothermic catalytic chemical reaction, and the magnetic field is investigated. The mathematical model comprised of a part of momentum, energy, and mass equations, which are solved using a finite difference method along with primitive variable formulation. Numerical solutions, using the method of quantitative differentiation, are made with the appropriate choice of dimensionless parameters. Analysis of the results obtained shows that the field temperature and flow of fluids are strongly influenced by the combined effects of catalytic chemical reactions and the magnetic field. The …


Twisted Spatiotemporal Optical Vortex Random Fields, Milo W. Hyde Iv Apr 2021

Twisted Spatiotemporal Optical Vortex Random Fields, Milo W. Hyde Iv

Faculty Publications

We present twisted spatiotemporal optical vortex (STOV) beams, which are partially coherent light sources that possess a coherent optical vortex and a random twist coupling their space and time dimensions. These beams have controllable partial coherence and transverse orbital angular momentum (OAM), which distinguishes them from the more common spatial vortex and twisted beams (known to carry longitudinal OAM) in the literature and should ultimately make them useful in applications such as optical communications and optical tweezing. We present the mathematical analysis of twisted STOV beams, deriving the mutual coherence function and linear and angular momentum densities. We simulate the …


On-Chip Silicon Photonic Controllable 2 × 2 Four-Mode Waveguide Switch, Cao Dung Truong, Duy Nguyen Thi Hang, Hengky Chandrahalim, Minh Tuan Trinh Jan 2021

On-Chip Silicon Photonic Controllable 2 × 2 Four-Mode Waveguide Switch, Cao Dung Truong, Duy Nguyen Thi Hang, Hengky Chandrahalim, Minh Tuan Trinh

Faculty Publications

Multimode optical switch is a key component of mode division multiplexing in modern high-speed optical signal processing. In this paper, we introduce for the first time a novel 2 × 2 multimode switch design and demonstrate in the proof-of-concept. The device composes of four Y-multijunctions and 2 × 2 multimode interference coupler using silicon-on-insulator material with four controllable phase shifters. The shifters operate using thermo-optic effects utilizing Ti heaters enabling simultaneous switching of the optical signal between the output ports on four quasi-transverse electric modes with the electric power consumption is in order of 22.5 mW and the switching time …


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Temporally Multiplexed Ladar Polarimeter, Christian Keyser, Richard Kenneth Martin Oct 2020

Temporally Multiplexed Ladar Polarimeter, Christian Keyser, Richard Kenneth Martin

AFIT Patents

In a polarimeter, a polarization modulator changes a polarization phase of an output optical pulse with a modulation function that varies in time over the duration of the optical pulse. A static polarization state analyzer, which includes a one or more static polarization component analyzers and detectors, receives the modulated optical pulse after interaction with a target medium and provides time varying intensities of the polarization components of the received pulse. A signal processing module determines a polarization property of the target medium, such as a Mueller matrix, dependent upon time varied intensities over the duration of the received optical …


Nondestructive Electromagnetic Characterization Of Uniaxial Sheet Media Using A Two-Flanged Rectangular Waveguide Probe, Neil G. Rogers, Michael J. Havrilla, Milo W. Hyde Iv, Alexander G. Knisely Jun 2020

Nondestructive Electromagnetic Characterization Of Uniaxial Sheet Media Using A Two-Flanged Rectangular Waveguide Probe, Neil G. Rogers, Michael J. Havrilla, Milo W. Hyde Iv, Alexander G. Knisely

Faculty Publications

Excerpt: Recent advancements in fabrication capabilities have renewed interest in the electromagnetic characterization of complex media, as many metamaterials are anisotropic and/or inhomogeneous. Additionally, for composite materials, anisotropy can be introduced by load, strain, misalignment, or damage through the manufacturing process [1], [2]. Methods for obtaining the constitutive parameters for isotropic materials are well understood and widely employed [3]–[8]. Therefore, it is crucial to develop a practical method for the electromagnetic characterization of anisotropic materials.


Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides Apr 2020

Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides

Faculty Publications

We present a novel light detection and ranging (LiDAR) polarimeter that enables measurement of 12 of 16 sample Mueller matrix elements in a single, 10 ns pulse. The new polarization state generator (PSG) leverages Kerr phase modulation in a birefringent optical fiber, creating a probe pulse characterized by temporally varying polarization. Theoretical expressions for the Polarization State Generator (PSG) Stokes vector are derived for birefringent walk-off and no walk-off and incorporated into a time-dependent polarimeter signal model employing multiple polarization state analyzers (PSA). Polarimeter modeling compares the Kerr effect and electro-optic phase modulator–based PSG using a single Polarization State Analyzer …


Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv Mar 2020

Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv

Faculty Publications

We present a method to generate any genuine electromagnetic partially coherent source (PCS) from correlated, stochastic complex screens. The method described here can be directly implemented on existing spatial-light-modulator-based vector beam generators and can be used in any application which utilizes electromagnetic PCSs. Our method is based on the genuine cross-spectral density matrix criterion. Applying that criterion, we show that stochastic vector field realizations (corresponding to a desired electromagnetic PCS) can be generated by passing correlated Gaussian random numbers through “filters” with space-variant transfer functions. We include step-by-step instructions on how to generate the electromagnetic PCS field realizations. As an …


Generating Electromagnetic Dark And Antidark Partially Coherent Sources, Milo W. Hyde Iv Jan 2020

Generating Electromagnetic Dark And Antidark Partially Coherent Sources, Milo W. Hyde Iv

Faculty Publications

We present two methods to generate an electromagnetic dark and antidark partially coherent source. The first generalizes a recently published scalar approach by representing the stochastic electric field vector components as sums of randomly weighted, randomly tilted plane waves. The second method expands the field’s vector components in series of randomly weighted dark and antidark coherent modes. The statistical moments of the random weights—plane waves in the former method, coherent modes in the latter—are found by comparing the resulting means and covariances to those of the desired electromagnetic dark and antidark source. We validate both methods by simulating the generation …


Magslam: Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee, Aaron J. Canciani Jan 2020

Magslam: Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee, Aaron J. Canciani

Faculty Publications

Instances of spoofing and jamming of global navigation satellite systems (GNSSs) have emphasized the need for alternative navigation methods. Aerial navigation by magnetic map matching has been demonstrated as a viable GNSS‐alternative navigation technique. Flight test demonstrations have achieved accuracies of tens of meters over hour‐long flights, but these flights required accurate magnetic maps which are not always available. Magnetic map availability and resolution vary widely around the globe. Removing the dependency on prior survey maps extends the benefits of aerial magnetic navigation methods to small unmanned aerial systems (sUAS) at lower altitudes where magnetic maps are especially undersampled or …


Superconducting Phase Transition In Inhomogeneous Chains Of Superconducting Islands, Eduard Ilin, Irina Burkova, Xiangyu Song, Michael Pak, Dmitri S. Golubev, Alexey Bezryadin Jan 2020

Superconducting Phase Transition In Inhomogeneous Chains Of Superconducting Islands, Eduard Ilin, Irina Burkova, Xiangyu Song, Michael Pak, Dmitri S. Golubev, Alexey Bezryadin

Faculty Publications

We study one-dimensional chains of superconducting islands with a particular emphasis on the regime in which every second island is switched into its normal state, thus forming a superconductor-insulator-normal metal (S-I-N) repetition pattern. As is known since Giaever tunneling experiments, tunneling charge transport between a superconductor and a normal metal becomes exponentially suppressed, and zero-bias resistance diverges, as the temperature is reduced and the energy gap of the superconductor grows larger than the thermal energy. Here we demonstrate that this physical phenomenon strongly impacts transport properties of inhomogeneous superconductors made of weakly coupled islands with fluctuating values of the critical …


Generating Electromagnetic Nonuniformly Correlated Beams, Milo W. Hyde Iv, Xifeng Xiao, David G. Voelz Dec 2019

Generating Electromagnetic Nonuniformly Correlated Beams, Milo W. Hyde Iv, Xifeng Xiao, David G. Voelz

Faculty Publications

We develop a method to generate electromagnetic nonuniformly correlated (ENUC) sources from vector Gaussian Schell-model (GSM) beams. Having spatially varying correlation properties, ENUC sources are more difficult to synthesize than their Schell-model counterparts (which can be generated by filtering circular complex Gaussian random numbers) and, in past work, have only been realized using Cholesky decomposition—a computationally intensive procedure. Here we transform electromagnetic GSM field instances directly into ENUC instances, thereby avoiding computing Cholesky factors resulting in significant savings in time and computing resources. We validate our method by generating (via simulation) an ENUC beam with desired parameters. We find the …


Measurement Of Electron Density And Temperature From Laser-Induced Nitrogen Plasma At Elevated Pressure (1–6 Bar), Ashwin P. Rao [*], Mark Gragston, Anil K. Patnaik, Paul S. Hsu, Michael B. Shattan Nov 2019

Measurement Of Electron Density And Temperature From Laser-Induced Nitrogen Plasma At Elevated Pressure (1–6 Bar), Ashwin P. Rao [*], Mark Gragston, Anil K. Patnaik, Paul S. Hsu, Michael B. Shattan

Faculty Publications

Laser-induced plasmas experience Stark broadening and shifts of spectral lines carrying spectral signatures of plasma properties. In this paper, we report time-resolved Stark broadening measurements of a nitrogen triplet emission line at 1–6 bar ambient pressure in a pure nitrogen cell. Electron densities are calculated using the Stark broadening for different pressure conditions, which are shown to linearly increase with pressure. Additionally, using a Boltzmann fit for the triplet, the electron temperature is calculated and shown to decrease with increasing pressure. The rate of plasma cooling is observed to increase with pressure. The reported Stark broadening based plasma diagnostics in …


Nonlinearities And Carrier Dynamics In Refractory Plasmonic Tin Thin Films, Heather George, Jennifer Reed, Manuel R. Ferdinandus, Clayton Devault, Alexei Lagutchev, Augustine Urbas, Theodore B. Norris, Vladimir M. Shalaev, Alexandra Boltasseva, Nathaniel Kinsey Oct 2019

Nonlinearities And Carrier Dynamics In Refractory Plasmonic Tin Thin Films, Heather George, Jennifer Reed, Manuel R. Ferdinandus, Clayton Devault, Alexei Lagutchev, Augustine Urbas, Theodore B. Norris, Vladimir M. Shalaev, Alexandra Boltasseva, Nathaniel Kinsey

Faculty Publications

Titanium nitride is widely used in plasmonic applications, due to its robustness and optical properties which resemble those of gold. Despite this interest, the nonlinear properties have only recently begun to be investigated. In this work, beam deflection and non-degenerate femtosecond pump-probe spectroscopy (800 nm pump and 650 nm probe) were used to measure the real and imaginary transient nonlinear response of 30-nm-thick TiN films on sapphire and fused silica in the metallic region governed by Fermi-smearing nonlinearities. In contrast to other metals, it is found that TiN exhibits non-instantaneous positive refraction and reverse saturable absorption whose relaxation is dominated …


Near-Field Effects On Partially Coherent Light Scattered By An Aperture, Milo W. Hyde Iv, Michael J. Havrilla Aug 2019

Near-Field Effects On Partially Coherent Light Scattered By An Aperture, Milo W. Hyde Iv, Michael J. Havrilla

Faculty Publications

We investigate how the near field affects partially coherent light scattered from an aperture in an opaque screen. Prior work on this subject has focused on the role of surface plasmons, and how they affect spatial coherence is well documented. Here, we consider other near-field effects that might impact spatial coherence. We do this by examining the statistics of the near-zone field scattered from an aperture in a perfect electric conductor plane—a structure that does not support surface plasmons. We derive the near-field statistics (in particular, cross-spectral density functions) by applying electromagnetic equivalence theorems and the Method of Moments. We …


3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak Jul 2019

3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak

Faculty Publications

In this paper we present a design concept for 3D plasmonic scatterers as high- efficiency transmissive metasurface (MS) building blocks. A genetic algorithm (GA) routine partitions the faces of the walls inside an open cavity into a M x N grid of voxels which can be either covered with metal or left bare, and optimizes the distribution of metal coverage needed to generate electric and magnetic modes of equal strength with a targeted phase delay (Φt) at the design wavelength. Even though the electric and magnetic modes can be more complicated than typical low order modes, with their spectral overlap …


M2 Factor Of A Vector Schell-Model Beam, Milo W. Hyde Iv, Mark F. Spencer Jan 2019

M2 Factor Of A Vector Schell-Model Beam, Milo W. Hyde Iv, Mark F. Spencer

Faculty Publications

Extending existing scalar Schell-model source work, we derive the M2 factor for a general electromagnetic or vector Schell-model source to assess beam quality. In particular, we compute the M2 factors for two vector Schell-model sources found in the literature. We then describe how to synthesize vector Schell-model beams in terms of specified, desired M2 and present Monte Carlo simulation results to validate our analysis.


Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic (E > 10 Mev) Particle Events, J. F. Round, Robert D. Loper, Omar A. Nava, Stephen W. Kahler Jan 2019

Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic (E > 10 Mev) Particle Events, J. F. Round, Robert D. Loper, Omar A. Nava, Stephen W. Kahler

Faculty Publications

The elemental composition of heavy ions (with atomic number Z > 2) (hi-Z) in large gradual E > 10 MeV nuc-1 SEP events has been extensively studied in the 2-15 MeV nuc-1 range to determine the acceleration processes and transport properties of SEPs. These studies invariably are based on abundances relative to those of a single element such as C or O and often neglect H and He, the elements of primary interest for space weather. The total radiation of an SEP event is determined not only by the H and He properties but also by those of hi-Z ions …


Mems Variable Area Capacitor For Room Temperature Electrometry, George C. Underwood, Tod V. Laurvick Nov 2018

Mems Variable Area Capacitor For Room Temperature Electrometry, George C. Underwood, Tod V. Laurvick

Faculty Publications

This paper introduces a new way to detect charge using MEMS variable capacitors for extremely sensitive, room temperature electrometry. It is largely based on the electrometers introduced by Riehl et al. [1] except variable capacitance is created by a changing area, not a changing gap. The new scheme will improve MEMS electrometers by eliminating the effects of squeeze-film damping and by theoretically increasing the maximum charge resolution by 70%. The charge conversion gain (the increase in output voltage per input unit charge) for this system is derived. The result show good agreement with MATLAB calculations.


Quantification Of The Impact Of Photon Distinguishability On Measurement-Device- Independent Quantum Key Distribution, Garrett K. Simon, Blake K. Huff, William M. Meier, Logan O. Mailloux, Lee E. Harrell Apr 2018

Quantification Of The Impact Of Photon Distinguishability On Measurement-Device- Independent Quantum Key Distribution, Garrett K. Simon, Blake K. Huff, William M. Meier, Logan O. Mailloux, Lee E. Harrell

Faculty Publications

Measurement-Device-Independent Quantum Key Distribution (MDI-QKD) is a two-photon protocol devised to eliminate eavesdropping attacks that interrogate or control the detector in realized quantum key distribution systems. In MDI-QKD, the measurements are carried out by an untrusted third party, and the measurement results are announced openly. Knowledge or control of the measurement results gives the third party no information about the secret key. Error-free implementation of the MDI-QKD protocol requires the crypto-communicating parties, Alice and Bob, to independently prepare and transmit single photons that are physically indistinguishable, with the possible exception of their polarization states. In this paper, we apply the …


Demonstration Of Versatile Whispering-Gallery Micro-Lasers For Remote Refractive Index Sensing, Lei Wan, Hengky Chandrahalim, Jian Zhou Mar 2018

Demonstration Of Versatile Whispering-Gallery Micro-Lasers For Remote Refractive Index Sensing, Lei Wan, Hengky Chandrahalim, Jian Zhou

Faculty Publications

We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 x 10−4 RIU. The maximum bulk refractive index sensitivity (BRIS) …


Monte Carlo Simulations Of Three-Dimensional Electromagnetic Gaussian Schell-Model Sources, Milo W. Hyde Iv, Santasri Bose-Pillai, Olga Korotkova Feb 2018

Monte Carlo Simulations Of Three-Dimensional Electromagnetic Gaussian Schell-Model Sources, Milo W. Hyde Iv, Santasri Bose-Pillai, Olga Korotkova

Faculty Publications

This article presents a method to simulate a three-dimensional (3D) electromagnetic Gaussian-Schell model (EGSM) source with desired characteristics. Using the complex screen method, originally developed for the synthesis of two-dimensional stochastic electromagnetic fields, a set of equations is derived which relate the desired 3D source characteristics to those of the statistics of the random complex screen. From these equations and the 3D EGSM source realizability conditions, a single criterion is derived, which when satisfied guarantees both the realizability and simulatability of the desired 3D EGSM source. Lastly, a 3D EGSM source, with specified properties, is simulated; the Monte Carlo simulation …


Metastable Ar(1s5) Density Dependence On Pressure And Argon-Helium Mixture In A High Pressure Radio Frequency Dielectric Barrier Discharge, Daniel J. Emmons, David E. Weeks, Ben Eshel, Glen P. Perram Jan 2018

Metastable Ar(1s5) Density Dependence On Pressure And Argon-Helium Mixture In A High Pressure Radio Frequency Dielectric Barrier Discharge, Daniel J. Emmons, David E. Weeks, Ben Eshel, Glen P. Perram

Faculty Publications

Simulations of an α-mode radio frequency dielectric barrier discharge are performed for varying mixtures of argon and helium at pressures ranging from 200 to 500 Torr using both zero and one-dimensional models. Metastable densities are analyzed as a function of argon-helium mixture and pressure to determine the optimal conditions, maximizing metastable density for use in an optically pumped rare gas laser. Argon fractions corresponding to the peak metastable densities are found to be pressure dependent, shifting from approximately 15% Ar in He at 200 Torr to 10% at 500 Torr. A decrease in metastable density is observed as pressure …


Effects Of Edge Inclination Angles On Whispering-Gallery Modes In Printable Wedge Microdisk Lasers, Cong Chen, Lei Wan, Hengky Chandrahalim Jan 2018

Effects Of Edge Inclination Angles On Whispering-Gallery Modes In Printable Wedge Microdisk Lasers, Cong Chen, Lei Wan, Hengky Chandrahalim

Faculty Publications

The ink-jet technique was developed to print the wedge polymer microdisk lasers. The characterization of these lasers was implemented using a free-space optics measurement setup. It was found that disks of larger edge inclination angles have a larger free spectral range (FSR) and a lower resonance wavelength difference between the fundamental transverse electric (TE) and transverse magnetic (TM) whispering-gallery modes (WGMs). This behavior was also confirmed with simulations based on the modified Oxborrow’s model with perfectly matched layers (PMLs), which was adopted to accurately calculate the eigenfrequencies, electric field distributions, and quality parameters of modes in the axisymmetric microdisk resonators. …


Measuring The Reflection Matrix Of A Rough Surface, Kenneth W. Burgi, Michael A. Marciniak, Mark E. Oxley, Stephen E. Nauyoks May 2017

Measuring The Reflection Matrix Of A Rough Surface, Kenneth W. Burgi, Michael A. Marciniak, Mark E. Oxley, Stephen E. Nauyoks

Faculty Publications

Phase modulation methods for imaging around corners with reflectively scattered light required illumination of the occluded scene with a light source either in the scene or with direct line of sight to the scene. The RM (reflection matrix) allows control and refocusing of light after reflection, which could provide a means of illuminating an occluded scene without access or line of sight. Two optical arrangements, one focal-plane, the other an imaging system, were used to measure the RM of five different rough-surface reflectors. Intensity enhancement values of up to 24 were achieved. Surface roughness, correlation length, and slope were examined …


Generation Of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators, Milo W. Hyde Iv, Santasri Bose-Pillai, David G. Voelz, Xifeng Xiao Dec 2016

Generation Of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators, Milo W. Hyde Iv, Santasri Bose-Pillai, David G. Voelz, Xifeng Xiao

Faculty Publications

A simple and flexible optical system for generating electromagnetic or vector partially coherent sources or beams is presented. The alternative design controls field amplitude (beam shape), coherence, and polarization using only spatial light modulators. This improvement makes the apparatus simpler to construct and significantly increases the flexibility of vector partially coherent source generators by allowing many different types of sources to be produced without changing the physical setup. The system’s layout and theoretical foundations are thoroughly discussed. The utility and flexibility of the proposed system are demonstrated by producing a vector Schell-model and non-Schell-model source. The experimental results are compared …


Dual Role Of Sb Ions As Electron Traps And Hole Traps In Photorefractive Sn2P2S6 Crystals, Brant E. Kananen, Eric M. Golden, Sergey A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoika, John W. Mcclory, Nancy C. Giles, Larry E. Halliburton Dec 2016

Dual Role Of Sb Ions As Electron Traps And Hole Traps In Photorefractive Sn2P2S6 Crystals, Brant E. Kananen, Eric M. Golden, Sergey A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoika, John W. Mcclory, Nancy C. Giles, Larry E. Halliburton

Faculty Publications

Doping photorefractive single crystals of Sn2P2S6 with antimony introduces both electron and hole traps. In as-grown crystals, Sb3+ (5s2) ions replace Sn2+ ions. These Sb3+ ions are either isolated (with no nearby perturbing defects) or they have a charge-compensating Sn2+ vacancy at a nearest-neighbor Sn site. When illuminated with 633 nm laser light, isolated Sb3+ ions trap electrons and become Sb2+ (5s25p1) ions. In contrast, Sb3+ ions with an adjacent Sn vacancy trap holes during illumination. The hole is primarily …


Intrinsic Physical Layer Authentication Of Integrated Circuits, William E. Cobb, Michael A. Temple, Rusty O. Baldwin, Eric W. Garcia, Eric D. Lapse May 2015

Intrinsic Physical Layer Authentication Of Integrated Circuits, William E. Cobb, Michael A. Temple, Rusty O. Baldwin, Eric W. Garcia, Eric D. Lapse

AFIT Patents

A system and method of generating and comparing a fingerprint for an integrated circuit is provided. A sensor module captures electromagnetic emissions from the integrated circuit. A feature extraction module extracts discriminating features from the captured electromagnetic emissions. A classifier training module generates a plurality of authentication fingerprints of the integrated circuit from the extracted discriminating features creating a reference fingerprint template for the integrated circuit. The reference template for the integrated circuit is stored in a database. For authentication, the reference fingerprint template from the database is compared to the generated authentication fingerprint.