Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Electromagnetics and Photonics

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic (E > 10 Mev) Particle Events, J. F. Round, Robert D. Loper, Omar A. Nava, Stephen W. Kahler Jan 2019

Variations Of Heavy Ion Abundances Relative To Proton Abundances In Large Solar Energetic (E > 10 Mev) Particle Events, J. F. Round, Robert D. Loper, Omar A. Nava, Stephen W. Kahler

Faculty Publications

The elemental composition of heavy ions (with atomic number Z > 2) (hi-Z) in large gradual E > 10 MeV nuc-1 SEP events has been extensively studied in the 2-15 MeV nuc-1 range to determine the acceleration processes and transport properties of SEPs. These studies invariably are based on abundances relative to those of a single element such as C or O and often neglect H and He, the elements of primary interest for space weather. The total radiation of an SEP event is determined not only by the H and He properties but also by those of hi-Z ions …


Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Jun 2018

Imaging The Three-Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri-Spot Point Spread Function, Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Fluorescence photons emitted by single molecules contain rich information regarding their rotational motions, but adapting single-molecule localization microscopy (SMLM) to measure their orientations and rotational mobilities with high precision remains a challenge. Inspired by dipole radiation patterns, we design and implement a Tri-spot point spread function (PSF) that simultaneously measures the three-dimensional orientation and the rotational mobility of dipole-like emitters across a large field of view. We show that the orientation measurements done using the Tri-spot PSF are sufficiently accurate to correct the anisotropy-based localization bias, from 30 nm to 7 nm, in SMLM. We further characterize the emission anisotropy …


Rotation Of Two-Petal Laser Beams In The Near Field Of A Spiral Microaxicon, S. S. Stafeev, Liam O'Faolain, M. V. Kotlyar Jun 2018

Rotation Of Two-Petal Laser Beams In The Near Field Of A Spiral Microaxicon, S. S. Stafeev, Liam O'Faolain, M. V. Kotlyar

Cappa Publications

Using a spiral microaxicon with the topological charge 2 and NA = 0.6 operating at a 532-nm wavelength and fabricated by electron-beam lithography, we experimentally demonstrate the rotation of a two-petal laser beam in the near field (several micrometers away from the axicon surface). The estimated rotation rate is 55 °/mm and linearly dependent on the on-axis distance, with the theoretical rotation rate being 53 °/mm. The experimentally measured rotation rate is found to be linear and coincident with the simulation results only on the on-axis segment from 1.5 to 3 mm. The experimentally measured rotation rate is 66 °/mm …


Interstitial Silicon Ions In Rutile Tio2 Crystals, Eric M. Golden, Nancy C. Giles, Shan Yang, Larry E. Halliburton Apr 2015

Interstitial Silicon Ions In Rutile Tio2 Crystals, Eric M. Golden, Nancy C. Giles, Shan Yang, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) is used to identify a new and unique photoactive silicon-related point defect in single crystals of rutile TiO2. The importance of this defect lies in its assignment to interstitial silicon ions and the unexpected establishment of silicon impurities as a major hole trap in TiO2. Principal g values of this new S=1/2 center are 1.9159, 1.9377, and 1.9668 with principal axes along the [¯110],[001], and [110] directions, respectively. Hyperfine structure in the EPR spectrum shows the unpaired spin interacting equally with two Ti nuclei and unequally with two Si nuclei. These silicon …


Neutral Nitrogen Acceptors In Zno: The 67Zn Hyperfine Interactions, Eric M. Golden, S. M. Evans, Larry E. Halliburton, Nancy C. Giles Mar 2014

Neutral Nitrogen Acceptors In Zno: The 67Zn Hyperfine Interactions, Eric M. Golden, S. M. Evans, Larry E. Halliburton, Nancy C. Giles

Faculty Publications

Electron paramagnetic resonance (EPR) is used to characterize the 67Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N) initially present in the crystal are converted to their paramagnetic neutral charge state (N0) during exposure at low temperature to 442 or 633 nm laser light. The EPR signals from these N0 acceptors are best observed near 5 K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion …


Triplet Ground State Of The Neutral Oxygen-Vacancy Donor In Rutile Tio2, A. T. Brant, Eric M. Golden, Nancy C. Giles, Shan Yang, M. A. R. Sarker, S. Watauchi, M. Nagao, I. Tanaka, D. A. Tryk, A. Manivannan, Larry E. Halliburton Mar 2014

Triplet Ground State Of The Neutral Oxygen-Vacancy Donor In Rutile Tio2, A. T. Brant, Eric M. Golden, Nancy C. Giles, Shan Yang, M. A. R. Sarker, S. Watauchi, M. Nagao, I. Tanaka, D. A. Tryk, A. Manivannan, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) is used to investigate the triplet (S = 1) ground state of the neutral oxygen vacancy in bulk rutile TiO2 crystals. This shallow donor consists of an oxygen vacancy with two nearest-neighbor, exchange-coupled 3+ ions located along the [001] direction and equidistant from the vacancy. The spins of the two trapped electrons, one at each 3+ ion, align parallel to give the S = 1 state. These neutral oxygen vacancies are formed near 25 K in as-grown oxidized TiO2 crystals by illuminating with sub-band-gap 442 nm laser light. The angular dependence of the EPR …


Ground State Of The Singly Ionized Oxygen Vacancy In Rutile Tio2, A. T. Brant, Nancy C. Giles, Shan Yang (杨山), M. A. R. Sarker, S. Watauchi, M. Nagao, I. Tanaka, D. A. Tryk, A. Manivannan, Larry E. Halliburton Sep 2013

Ground State Of The Singly Ionized Oxygen Vacancy In Rutile Tio2, A. T. Brant, Nancy C. Giles, Shan Yang (杨山), M. A. R. Sarker, S. Watauchi, M. Nagao, I. Tanaka, D. A. Tryk, A. Manivannan, Larry E. Halliburton

Faculty Publications

Results from electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) experiments are used to establish the model for the ground state of the singly ionized oxygen vacancy in the interior of bulk rutile TiO2 crystals. Hyperfine from 47Ti and 49Ti nuclei show that the unpaired electron in this S = 1/2 defect is localized on one titanium ion adjacent to the oxygen vacancy (i.e., the spin is not shared by two titanium ions). These defects are formed at low temperature (∼35 K) in as-grown oxidized crystals when sub-band-gap 442 nm laser light converts doubly ionized nonparamagnetic …


Serpentine Low Loss Trapezoidal Silica Waveguides On Silicon, Xiaomin Zhang, Mark Harrison, Audrey Harker, Andrea M. Armani Sep 2012

Serpentine Low Loss Trapezoidal Silica Waveguides On Silicon, Xiaomin Zhang, Mark Harrison, Audrey Harker, Andrea M. Armani

Engineering Faculty Articles and Research

We report the fabrication and characterization of straight and serpentine low loss trapezoidal silica waveguides integrated on a silicon substrate. The waveguide channel was defined using a dual photo-lithography and buffered HF etching and isolated from the silicon substrate using an isotropic silicon etchant. The waveguide is air-clad and thus has a core-cladding effective index contrast of approximately 25%. Measured at 658, 980 and 1550nm, the propagation loss was found to be 0.69, 0.59, and 0.41dB/cm respectively, with a critical bending radius less than 375μm. The waveguide’s polarization behavior was investigated both theoretically and experimentally. Additionally, the output power shows …


Oxygen Vacancies Adjacent To Cu(2+) Ions In Tio(2) (Rutile) Crystals, A. T. Brant, Shan Yang (杨山), Nancy C. Giles, Zafar Iqbal, A. Manivannan, Larry E. Halliburton Apr 2011

Oxygen Vacancies Adjacent To Cu(2+) Ions In Tio(2) (Rutile) Crystals, A. T. Brant, Shan Yang (杨山), Nancy C. Giles, Zafar Iqbal, A. Manivannan, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to characterize Cu2+ ions substituting for Ti4+ ions in nominally undoped TiO2 crystals having the rutile structure. Illumination at 25 K with 442 nm laser light reduces the concentration of Cu2+ ions by more than a factor of 2. The laser light also reduces the EPR signals from Fe3+ and Cr3+ ions and introduces signals from Ti3+ ions. Warming in the dark to room temperature restores the crystal to its preilluminated state. Monitoring the recovery of the photoinduced changes in the Cu …


Monoclinic Optical Constants, Birefringence, And Dichroism Of Slanted Titanium Nanocolumns Determined By Generalized Ellipsometry, Daniel Schmidt, Benjamin Booso, Tino Hofmann, Eva Schubert, Andrew Sarangan, Mathias Schubert Jan 2009

Monoclinic Optical Constants, Birefringence, And Dichroism Of Slanted Titanium Nanocolumns Determined By Generalized Ellipsometry, Daniel Schmidt, Benjamin Booso, Tino Hofmann, Eva Schubert, Andrew Sarangan, Mathias Schubert

Electrical and Computer Engineering Faculty Publications

Generalized spectroscopic ellipsometry determines the principal monoclinic optical constants of thin films consisting of slanted titanium nanocolumns deposited by glancing angle deposition under 85° incidence and tilted from the surface normal by 47°. Form birefringence measured for wavelengths from 500 to 1000 nm renders the Ti nanocolumns monoclinic absorbing crystals with c-axis along the nanocolumns, b-axis parallel to the film interface, and 67.5° monoclinic angle between the aand c-axes. The columnar thin film reveals anomalous optical dispersion, extreme birefringence, strong dichroism, and differs completely from bulk titanium. Characteristic bulk interband transitions are absent in the spectral range investigated.


Electron Pulse Broadening Due To Space Charge Effects In A Photoelectron Gun For Electron Diffraction And Streak Camera Systems, Bao-Liang Qian, Hani E. Elsayed-Ali Jan 2002

Electron Pulse Broadening Due To Space Charge Effects In A Photoelectron Gun For Electron Diffraction And Streak Camera Systems, Bao-Liang Qian, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The electron pulse broadening and energy spread, caused by space charge effects, in a photoelectron gun are studied analytically using a fluid model. The model is applicable in both the photocathode-to-mesh region and the postanode electron drift region. It is found that space charge effects in the photocathode-to-mesh region are generally unimportant even for subpicosecond pulses. However, because of the long drift distance, electron pulse broadening due to space charge effects in the drift region is usually significant and could be much larger than the initial electron pulse duration for a subpicosecond electron pulse. Space charge effects can also lead …


Acceleration Element For Femtosecond Electron Pulse Compression, Bao-Liang Qian, Hani E. Elsayed-Ali Jan 2002

Acceleration Element For Femtosecond Electron Pulse Compression, Bao-Liang Qian, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

An acceleration element is proposed for compressing the electron pulse duration in a femtosecond photoelectron gun. The element is a compact metal cavity with curved-shaped walls. An external voltage is applied to the cavity where a special electric field forms in such a way that the slow electrons in the electron pulse front are accelerated more than the fast electrons, and consequently the electron pulse duration will be compressed. The distribution of the electric field inside the acceleration cavity is analyzed for the geometry of the cavity. The electron dynamics in this acceleration cavity is also investigated numerically. Numerical results …


Surface Debye Temperature Measurement With Reflection High-Energy Electron Diffraction, H. E. Elsayed-Ali Jan 1996

Surface Debye Temperature Measurement With Reflection High-Energy Electron Diffraction, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Measurement of the surface mean-square atomic vibrational amplitude, or equivalently the surface Debye temperature, with reflection high-energy electron diffraction is discussed. Low-index surfaces of lead are used as examples. Particular details are given about the temperature-dependent diffraction pattern of Pb(100) in the Debye-Waller region. The use of reflection high-energy electron diffraction for measurement of the substrate surface temperature in thin-film deposition chambers is suggested. © 1996 American Institute of Physics.