Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Electrical and Electronics

A Modular Electrical Power System Architecture For Small Spacecraft, Timothy M. Lim Jan 2016

A Modular Electrical Power System Architecture For Small Spacecraft, Timothy M. Lim

Theses and Dissertations--Electrical and Computer Engineering

Small satellites and CubeSats have established themselves within the aerospace community because of their low cost and high return on investment. Many CubeSats are developed in a short time frame and often leverage commercial off the shelf components for quick turnaround missions. With regard to the Electrical Power System, commercially available products typically use a centralized architecture. However, a centralized architecture is not reusable, since missions that require additional solar arrays or batteries would necessitate a redesign of the power system. With the range of CubeSat sizes and mission goals, it is obvious that a one-size-fits-all solution is not appropriate. …


Small Satellite Noncommutative Rotation Sequence Attitude Control Using Piezoelectric Actuators, Joshua L. Evans Jan 2016

Small Satellite Noncommutative Rotation Sequence Attitude Control Using Piezoelectric Actuators, Joshua L. Evans

Theses and Dissertations--Electrical and Computer Engineering

Attitude control remains one of the top engineering challenges faced by small satellite mission planning and design. Conventional methods for attitude control include propulsion, reaction wheels, magnetic torque coils, and passive stabilization mechanisms, such as permanent magnets that align with planetary magnetic fields. Drawbacks of these conventional attitude control methods for small satellites include size, power consumption, dependence on external magnetic fields, and lack of full control authority. This research investigates an alternative, novel approach to attitude-control method for small satellites, utilizing the noncommutative property of rigid body rotation sequences. Piezoelectric bimorph actuators are used to induce sinusoidal small-amplitude satellite …


Evaluating The Effectiveness Of Peak Power Tracking Technologies For Solar Arrays On Small Spacecraft, Daniel Martin Erb Jan 2011

Evaluating The Effectiveness Of Peak Power Tracking Technologies For Solar Arrays On Small Spacecraft, Daniel Martin Erb

University of Kentucky Master's Theses

The unique environment of CubeSat and small satellite missions allows certain accepted paradigms of the larger satellite world to be investigated in order to trade performance for simplicity, mass, and volume. Peak Power Tracking technologies for solar arrays are generally implemented in order to meet the End-of-Life power requirements for satellite missions given radiation degradation over time. The short lifetime of the generic satellite mission removes the need to compensate for this degradation. While Peak Power Tracking implementations can give increased power by taking advantage and compensating for the temperature cycles that solar cells experience, this comes at the expense …