Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Electrical and Electronics

Three-Event Energy Detection With Adaptive Threshold For Spectrum Sensing In Cognitive Radio Systems, Alexandru Martian, Mahmood Jalal Ahmad Al Sammarraie, Calin Vladeanu, Dimitrie Popescu Jul 2020

Three-Event Energy Detection With Adaptive Threshold For Spectrum Sensing In Cognitive Radio Systems, Alexandru Martian, Mahmood Jalal Ahmad Al Sammarraie, Calin Vladeanu, Dimitrie Popescu

Electrical & Computer Engineering Faculty Publications

Implementation of dynamic spectrum access (DSA) in cognitive radio (CR) systems requires the unlicensed secondary users (SU) to implement spectrum sensing to monitor the activity of the licensed primary users (PU). Energy detection (ED) is one of the most widely used methods for spectrum sensing in CR systems, and in this paper we present a novel ED algorithm with an adaptive sensing threshold. The three-event ED (3EED) algorithm for spectrum sensing is considered for which an accurate approximation of the optimal decision threshold that minimizes the decision error probability (DEP) is found using Newton’s method with forced convergence in one …


Recent Developments In The Pyscf Program Package, Qiming Sun, Xing Zhang, Samragni Banerjee, Peng Bao, Marc Barbry, Nick S. Blunt, Nikolay A. Bogdanov, George H. Booth, Jia Chen, Zhi-Hao Cui, Janus J. Eriksen, Yang Gao, Sheng Gun, Jan Hermann, Matthew R. Hermes, Kevin Koh, Peter Koval, Susi Lehtola, Zhendong Li, Junzi Liu, Narbe Mardirossian, James D. Mcclain, Mario Motta, Bastien Mussard, Hung Q. Pham, Artem Pulkin, Wirawan Purwanto, Paul J. Robinson, Enrico Ronca, Elvira R. Sayfutyarova, Maximillian Scheurer, Henry F. Schurkus, James E.T. Smith, Chong Sun, Shi-Ning Sun, Shiv Upadhyay, Lucas K. Wagner, Xiao Wang, Alec White, James Daniel Whitfield, Mark J. Williamson, Sebastian Wouters, Jun Yang, Jason M. Yu, Tianyu Zhu, Timothy C. Berkelbach, Sandeep Sharma, Alexander Yu Sokolov, Garnet Kin-Lic Chan Jan 2020

Recent Developments In The Pyscf Program Package, Qiming Sun, Xing Zhang, Samragni Banerjee, Peng Bao, Marc Barbry, Nick S. Blunt, Nikolay A. Bogdanov, George H. Booth, Jia Chen, Zhi-Hao Cui, Janus J. Eriksen, Yang Gao, Sheng Gun, Jan Hermann, Matthew R. Hermes, Kevin Koh, Peter Koval, Susi Lehtola, Zhendong Li, Junzi Liu, Narbe Mardirossian, James D. Mcclain, Mario Motta, Bastien Mussard, Hung Q. Pham, Artem Pulkin, Wirawan Purwanto, Paul J. Robinson, Enrico Ronca, Elvira R. Sayfutyarova, Maximillian Scheurer, Henry F. Schurkus, James E.T. Smith, Chong Sun, Shi-Ning Sun, Shiv Upadhyay, Lucas K. Wagner, Xiao Wang, Alec White, James Daniel Whitfield, Mark J. Williamson, Sebastian Wouters, Jun Yang, Jason M. Yu, Tianyu Zhu, Timothy C. Berkelbach, Sandeep Sharma, Alexander Yu Sokolov, Garnet Kin-Lic Chan

University Administration Publications

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PySCF across the domains of quantum chemistry, materials science, machine learning, and …


Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach Jan 2005

Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach

Bioelectrics Publications

A fluid model has been developed and used to help clarify the physical mechanisms occurring in microhollow cathode discharges (MHCD). Calculated current-voltage (I-V) characteristics and gas temperatures in xenon at 100 Torr are presented. Consistent with previous experimental results in similar conditions, we find a voltage maximum in the I-V characteristic. We show that this structure reflects a transition between a low-current, abnormal discharge localized inside the cylindrical hollow cathode to a higher-current, normal glow discharge sustained by electron emission from the outer surface of the cathode. This transition, due to the geometry of …


Electrical Network-Based Time-Dependent Model Of Electrical Breakdown In Water, R. P. Joshi, J. Qian, K. H. Schoenbach Jan 2002

Electrical Network-Based Time-Dependent Model Of Electrical Breakdown In Water, R. P. Joshi, J. Qian, K. H. Schoenbach

Bioelectrics Publications

A time-dependent, two-dimensional, percolative approach to model dielectric breakdown based on a network of parallel resistor–capacitor elements having random values, has been developed. The breakdown criteria rely on a threshold electric field and on energy dissipation exceeding the heat of vaporization. By carrying out this time-dependent analysis, the development and propagation of streamers and prebreakdown dynamical evolution have been obtained directly. These model simulations also provide the streamer shape, characteristics such as streamer velocity, the prebreakdown delay time, time-dependent current, and relationship between breakdown times, and applied electric fields for a given geometry. The results agree well with experimental data …