Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Electrical and Electronics

Design Of A Bandgap Voltage Reference, Nicolaus Vail May 2022

Design Of A Bandgap Voltage Reference, Nicolaus Vail

Electrical Engineering Undergraduate Honors Theses

This thesis details the design process of a bandgap voltage reference (BGR) integrated circuit in a 180 nm CMOS process. A BGR provides a constant DC voltage across a range of operating temperatures and supply voltages. By its nature, the circuit is intended as a reference, not to provide current, so the output would be connected to a very high impedance, such as the gate of a transistor. At 27°C, this design provides a 955 mV reference voltage given a nominal VDD of 3 V. From 20°C to 175°C, the output voltage has a variance of 7.2 mV (approximately 0.8%) …


Signal Analysis Of Photovoltaic Systems For Multilevel Cybersecurity, Wesley G. Schwartz May 2022

Signal Analysis Of Photovoltaic Systems For Multilevel Cybersecurity, Wesley G. Schwartz

Electrical Engineering Undergraduate Honors Theses

The cybersecurity of grid-connected power electronics is a rapidly developing field as more and more of these devices become a part of the Internet of Things. The objective of this thesis to analyze the current control signals of a photovoltaic (PV) inverter and develop an interface board for the implementation of a new cyber-secure controller.

In this thesis, the testing and in-depth analysis of the current PV inverter control system will be conducted. Using the data collected, an interface board will be developed to allow the use of the Unified Control Board (UCB), developed by Chris Farnell, in the PV …


Transimpedance Amplification Of Optocoupler Output For High Temperature Applications, Kara Maurer May 2021

Transimpedance Amplification Of Optocoupler Output For High Temperature Applications, Kara Maurer

Electrical Engineering Undergraduate Honors Theses

When looking to the future of electronics, one characteristic is becoming more lucrative: high temperature capabilities. With the goals of not only becoming more efficient electronically, spatially, and cost-wise, adapting electronics for a high temperature environment can potentially be a route to all three of these goals. Not only does it take away the need for a cooling method, but it can also increase the longevity of a product which can make it even more cost effective. In an effort to contribute to the push for high temperature electronics, the University of Arkansas is developing a high temperature power module …


Impact Of Wind Generation On Transmission Voltage Support During Weak Grid, Yugo Isogai May 2021

Impact Of Wind Generation On Transmission Voltage Support During Weak Grid, Yugo Isogai

Electrical Engineering Undergraduate Honors Theses

Today, there are concerns about the effects of high wind penetration on electric power system operations. This is due to the more distributed nature of wind turbine generation and the corresponding multi-path power flows on the electric power transmission grid. In particular, the higher line impendences associated with inverter-based wind generation results in larger voltage fluctuation under varying load. This may results in conditions where even after a fault condition has been cleared, the transmission system voltages may not recover. Therefore, this paper concentrates on the impact of weak grid condition for voltage instability. To approach it, a 6-bus system …


Ironless, Axial Flux, Electric Bldc Motor For Aircraft Electric Propulsion, Kevin W. Hobbs May 2021

Ironless, Axial Flux, Electric Bldc Motor For Aircraft Electric Propulsion, Kevin W. Hobbs

Electrical Engineering Undergraduate Honors Theses

3D printing has shown much promise as a method of rapidly manufacturing lightweight ironless motors to meet the growing demand that airlines have for more cost-effective products that reduce emissions and flight prices. 3D-printed ironless, axial flux, electric BLDC motors would meet these needs with both their high efficiency and power density.

A Halbach array motor was designed and 3D-printed for the analysis of its magnetic properties to gain more insight about it performance. Fusion 360 was used to design the 3D drawings of the motor parts. The rotor, stator, and stator mount were designed to accommodate the sizes of …


Design And Fabrication Of A Microstrip Bandpass Filter In Ltcc, Allison Rucker May 2021

Design And Fabrication Of A Microstrip Bandpass Filter In Ltcc, Allison Rucker

Electrical Engineering Undergraduate Honors Theses

The goal of the project was to design and fabricate a bandpass filter with a center frequency of 25GHz with a 2GHz bandwidth. The first step was to do the calculation to design a bandpass filter to meet these specifications along with the properties of the DupontTM GreenTapeTM 9K7. HFSS was then used to verify the results from the initial calculations. There was a significant error between the two results, so more tweaking was done to the calculations to get a better center frequency. After a final design was decided, the fabrication process started. Low-Temperature Co-Fired Ceramics (LLTC) …


Load Flow Analysis Of 138/69kv Substation Using Electrical Transient & Analysis Program (Etap), Vanessa Abadia Gomez Dec 2019

Load Flow Analysis Of 138/69kv Substation Using Electrical Transient & Analysis Program (Etap), Vanessa Abadia Gomez

Electrical Engineering Undergraduate Honors Theses

This paper examines the load flow analysis of a high-voltage substation using ETAP, and explores options for improving the voltage profile of the system. This study yields critical information about the system, such as the voltage drop at each feeder, the voltage at each bus, as well as real and reactive power losses at the different branches and feeders. In this power flow examination, the system’s performance is evaluated for different operating conditions, so that control measurements can be applied if necessary. The experimental results are used for proposing a plan of using fixed and switched shunt capacitor banks to …


Modeling Solder Ball Array Interconnects For Power Module Optimization, Paul Swearingen May 2019

Modeling Solder Ball Array Interconnects For Power Module Optimization, Paul Swearingen

Electrical Engineering Undergraduate Honors Theses

PowerSynth is a software platform that can co-optimize power modules utilizing a 2D topology and wire bond interconnects. The novel 3D architectures being proposed at the University of Arkansas utilize solder ball interconnects instead of wire bonds. Therefore, they currently cannot be optimized using PowerSynth. This paper examines methods to accurately model the parasitic inductance of solder balls and ball grid arrays so they may be implemented into software for optimization. Proposed mathematical models are validated against ANSYS Electromagnetics Suite simulations. A comparison of the simulated data shows that mathematical models are well suited for implementation into optimization software platforms. …


Very Low Power Cockcroft-Walton Voltage Multiplier For Rf Energy Harvesting Applications, Trace Langdon May 2019

Very Low Power Cockcroft-Walton Voltage Multiplier For Rf Energy Harvesting Applications, Trace Langdon

Electrical Engineering Undergraduate Honors Theses

A device was required that could harvest the electromagnetic energy present in ambient radio frequency (RF) signals. A part of this device must convert the AC RF signal received by the antenna into a DC signal that can be used in an embedded application. Since the RF signal amplitude is small, it must first be amplified and rectified to become a usable signal. The Cockcroft-Walton voltage multiplier is a subsystem of the design which ideally converts a 100 mV AC signal coming from the antenna to a 350 mV DC signal. The output of the voltage multiplier is used to …


Smart Gate Driver Design For Silicon (Si) Igbts And Silicon-Carbide (Sic) Mosfets, Abdulaziz Alghanem May 2016

Smart Gate Driver Design For Silicon (Si) Igbts And Silicon-Carbide (Sic) Mosfets, Abdulaziz Alghanem

Electrical Engineering Undergraduate Honors Theses

The design of an efficient and smart gate driver for a Si IGBT and SiC MOSFET is addressed in thesis. First, the main IGBT parameters are evaluated thoroughly in order to understand their effects in the design of the gate driver. All known consequences of previously designed gate drivers are studied in order to achieve an optimum gate driver. As a result of this assessment, the designer is able to determine whether adding or removing components from the gate driver circuit are beneficial or not. Then, exhaustive research is done to identify suitable integrated circuits to use for the power …