Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Electrical and Electronics

Implementation Of Static Rfid Landmarks In Slam For Planogram Compliance, Brennan L. Drake Apr 2023

Implementation Of Static Rfid Landmarks In Slam For Planogram Compliance, Brennan L. Drake

Honors College Theses

Autonomous robotic systems are becoming increasingly prevalent in everyday life and exhibit robust solutions in a wide range of applications. They face many obstacles with the foremost of which being SLAM, or Simultaneous Localization and Mapping, that encompasses both creation of the map of an unknown environment and localization of the robot in said environment. In this experiment, researchers propose the use of RFID tags in a semi-dynamic commercial environment to provide concrete landmarks for localization and mapping in pursuit of increased locational certainty. With this obtained, the ultimate goal of the research is to construct a robotics platform for …


Autonomous Navigator Mobile Robot Upgrade, David Sansoucy Apr 2022

Autonomous Navigator Mobile Robot Upgrade, David Sansoucy

Thinking Matters Symposium

The mobile robot platform has been developed over the course of 10 years at USM. In Spring 2020, Belle-Isle and Werner updated the previous framework by rewriting the software to use the ROS framework running on an on-board Raspberry Pi 3. They also implemented navigation using an A* motion planning algorithm and image processing. In Summer 2021, Ames incorporated Lidar and Kinect sensors onto the robot to improve its real-time navigation capabilities. He also made improvements to the power distribution systems. This project aimed to build on the ROS frameworks developed by the previous 2 teams with the main goal …


Smart Uv-C Disinfectant Module, Nicole Baldy, Luke Rogers, Haitham Saleh Jan 2022

Smart Uv-C Disinfectant Module, Nicole Baldy, Luke Rogers, Haitham Saleh

Williams Honors College, Honors Research Projects

The Smart UV Disinfectant device shall sanitize objects which are 18”x14”x8” or smaller and less than 20 lbs. using UV-C light. This device should contain many safety measures to prevent human and animal exposure to the UV-C light and have no public touchpoints to operate the interface. In order to achieve the first objective, this device shall contain a "sanitizing chamber" which completely encloses the object to be sanitized to prevent outside exposure with detection of any lifeforms inside of the chamber; for the second objective, it will contain a wireless interface to an Android application which can be used …


Garden Bot: Autonomous Home Garden Weed Removal Robot, Brendon Lovejoy, Robert Connolly, Isaac Lucas, Stevan Veselinov Jan 2022

Garden Bot: Autonomous Home Garden Weed Removal Robot, Brendon Lovejoy, Robert Connolly, Isaac Lucas, Stevan Veselinov

Williams Honors College, Honors Research Projects

With frequent weeding being a tedious chore and an essential task for a successful garden, there is need for an automated method of handling this routine. Existing technologies utilize computer vision, GPS, multiple units and other tools to remove weeds from garden plots. However, these solutions are often complex and expensive, suited for large agricultural plots in contrast to small-scale home gardens. In addition, many of these technologies, along with manual tillers and cultivators suited for home use, are unable to perform weeding within rows of crops in a process known as intra-row weeding. The Garden Bot is an autonomous, …


Autonomous Combat Robot, Andrew J. Szabo Ii, Chris Heldman, Tristin Weber, Tanya Tebcherani, Holden Leblanc, Fabian Ardeljan Jan 2019

Autonomous Combat Robot, Andrew J. Szabo Ii, Chris Heldman, Tristin Weber, Tanya Tebcherani, Holden Leblanc, Fabian Ardeljan

Williams Honors College, Honors Research Projects

This honors project will also serve as an engineering senior design project.

The objective is to design and build the software and electrical systems for a 60 lb weight class combat robot that will function autonomously and outperform manually driven robots during competition.

While running autonomously, the robot will use LiDAR sensors to detect and attack opponent robots. This robot will also be able to be remote controlled in manual mode. This will mitigate the risk in case the autonomy or sensors fail. LED lights on the robot will indicate whether it is in autonomous or manual mode. The system …


Event And Time-Triggered Control Module Layers For Individual Robot Control Architectures Of Unmanned Agricultural Ground Vehicles, Tyler Troyer Oct 2017

Event And Time-Triggered Control Module Layers For Individual Robot Control Architectures Of Unmanned Agricultural Ground Vehicles, Tyler Troyer

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Automation in the agriculture sector has increased to an extent where the accompanying methods for unmanned field management are becoming more economically viable. This manifests in the industry’s recent presentation of conceptual cab-less machines that perform all field operations under the high-level task control of a single remote operator. A dramatic change in the overall workflow for field tasks that historically assumed the presence of a human in the immediate vicinity of the work is predicted. This shift in the entire approach to farm machinery work provides producers increased control and productivity over high-level tasks and less distraction from operating …


Packmule, Jared M. Alexander, Jared J. Ford, Timothy J. Griffiths, Andray Pennington Jan 2017

Packmule, Jared M. Alexander, Jared J. Ford, Timothy J. Griffiths, Andray Pennington

Williams Honors College, Honors Research Projects

People face demands of hauling equipment and belongings with them every day, whether it be for work or leisure. This design report discusses and details a product that would allow people to overcome the struggles of this. The Packmule is an autonomous following robot that has the capability of carrying a load up to 30 pounds. The design involves two independently controlled motors operating two drive wheels so that the Packmule will be flexible in the directions it can move. There are also two more steering wheels for support of the base and the load inside. The way in which …