Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Controls and Control Theory

Identifiability Of Additive Actuator And Sensor Faults By State Augmentation, Suresh M. Joshi, Oscar R. Gonzalez, Jason M. Upchurch Jan 2014

Identifiability Of Additive Actuator And Sensor Faults By State Augmentation, Suresh M. Joshi, Oscar R. Gonzalez, Jason M. Upchurch

Electrical & Computer Engineering Faculty Publications

A class of FDI (fault detection and identification) methods for bias-type actuator and sensor faults was explored from the point of view of fault identifiability. The methods use banks of Kalman-Bucy filters (KBFs) to detect faults, determine the fault pattern, and estimate the fault values. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults was presented. It was shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions were demonstrated via numerical examples. The analytical …


The Tracking Performance Of Distributed Recoverable Flight Control Systems Subject To High Intensity Radiated Fields, Rui Wang Jul 2011

The Tracking Performance Of Distributed Recoverable Flight Control Systems Subject To High Intensity Radiated Fields, Rui Wang

Electrical & Computer Engineering Theses & Dissertations

It is known that high intensity radiated fields (HIRF) can produce upsets in digital electronics, and thereby degrade the performance of digital flight control systems. Such upsets, either from natural or man-made sources, can change data values on digital buses and memory and affect CPU instruction execution. HIRF environments are also known to trigger common-mode faults, affecting nearly-simultaneously multiple fault containment regions, and hence reducing the benefits of n-modular redundancy and other fault-tolerant computing techniques. Thus, it is important to develop models which describe the integration of the embedded digital system, where the control law is implemented, as well …


Towards A Metric For The Assessment Of Safety Critical Control Systems, Oscar R. Gonzalez, Jorge R. Chavez-Fuentes, W. Steven Gray Jan 2008

Towards A Metric For The Assessment Of Safety Critical Control Systems, Oscar R. Gonzalez, Jorge R. Chavez-Fuentes, W. Steven Gray

Electrical & Computer Engineering Faculty Publications

There is a need for better integration of the fault tolerant and the control designs for safety critical systems such as aircraft. The dependability of current designs is assessed primarily with measures of the interconnection of fault tolerant components: the reliability function and the mean time to failure. These measures do not directly take into account the interaction of the fault tolerant components with the dynamics of the aircraft. In this paper, a first step to better integrate these designs is made. It is based on the observation that unstable systems are intrinsically unreliable and that a necessary condition for …


Performance Analysis And Validation Of A Recoverable Flight Control System In A Simulated Neutron Environment, Hong Zhang, W. Steven Gray, Oscar R. Gonzalez Jan 2005

Performance Analysis And Validation Of A Recoverable Flight Control System In A Simulated Neutron Environment, Hong Zhang, W. Steven Gray, Oscar R. Gonzalez

Electrical & Computer Engineering Faculty Publications

This paper introduces a class of stochastic hybrid models for the analysis of closed-loop control systems implemented with NASA's Recoverable Computer System. Such Recoverable Computer Systems have been proposed to insure reliable control performance in harsh environments. The stochastic hybrid models consist of either a stochastic finite-state automaton or a finite-state machine driven by a Markov input, which in turn drives a switched linear discrete-time dynamical system. Their stability and output tracking performance are analyzed using an extension of the existing theory for Markov jump-linear systems. For illustration, a stochastic hybrid model is used to calculate the tracking error performance …


Design And Implementation Of Fuzzy Logic Controllers. Thesis Final Report, 27 July 1992 - 1 January 1993, Osama A. Abihana, Oscar R. Gonzalez Jan 1993

Design And Implementation Of Fuzzy Logic Controllers. Thesis Final Report, 27 July 1992 - 1 January 1993, Osama A. Abihana, Oscar R. Gonzalez

Electrical & Computer Engineering Faculty Publications

The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design …