Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Masters Theses

Discipline
Institution
Keyword
Publication Year

Articles 1 - 16 of 16

Full-Text Articles in Controls and Control Theory

An Isostable Coordinate Based Amelioration Strategy To Mitigate The Effects Of Jet Lag, Talha Ahmed May 2023

An Isostable Coordinate Based Amelioration Strategy To Mitigate The Effects Of Jet Lag, Talha Ahmed

Masters Theses

Commercial air travel has become extremely commonplace in the last 20 to 30 years especially as the world has moved towards new heights of globalization. Though air travel has greatly reduced transit times allowing people to cover thousand of miles within hours, it comes with its fair share of issues. jet-lag can be regarded to be at the top of those list of problems; jet-lag typically results from rapid travel through multiple time zones which causes a significant misalignment between the person's internal circadian clock and the external time. A person's circadian clock is governed by a population of coupled …


Design And Simulation Of A Supervisory Control System For Hybrid Manufacturing, Michael Buckley Aug 2021

Design And Simulation Of A Supervisory Control System For Hybrid Manufacturing, Michael Buckley

Masters Theses

The research teams of Dr. Bill Hamel, Dr. Bradley Jared and Dr. Tony Schmitz were tasked by the Office of Naval Research to create a hybrid manufacturing process for a reduced scale model of a naval ship propeller. The base structure of the propeller is created using Wire Arc Additive Manufacturing (WAAM), which is then scanned to compare created geometry to desired geometry. The propeller is then machined down to match the desired geometry. This process is iterated upon until the final product meets design tolerances. Due to the complex nature and numerous industrial machines used in the process, it …


Optimal And Model Free Control Of Tumor Immune Interaction Dynamic To Schedule Cancer Treatments, Mohamed Alsager May 2021

Optimal And Model Free Control Of Tumor Immune Interaction Dynamic To Schedule Cancer Treatments, Mohamed Alsager

Masters Theses

Cancer is an intricate disease that can attack different parts of the human body. In the most common types of cancer, abnormal cells divide uncontrollably and impair body tissue. Cross disciplinary research has long aided expansion of our knowledge and ability to approach problems with a different perspective. Engineers and clinicians can collaborate to solve mysteries surrounding cancer cells function and responses. Engineers have contributed to cancer treatment, by studying new ways to diagnose and treat cancer. According to a study by John Hopkins university engineered Nano-particles can induce immune reaction and kill cancer cells. In addition, new ways of …


Modeling And Design Of A Low-Level Rf Control System For The Accumulator Ring At Spallation Neutron Source, Michael G. Trout Aug 2017

Modeling And Design Of A Low-Level Rf Control System For The Accumulator Ring At Spallation Neutron Source, Michael G. Trout

Masters Theses

Since its commissioning in 2006, Spallation Neutron Source (SNS) at Oak Ridge National Laboratory has greatly contributed to the field of neutron science, but some critical systems are reaching end-of-life. This obsolescence must be addressed for the accelerator to continue providing world-class research capabilities. One such system needing redesign is the low-level RF (LLRF) control system for the proton accumulator ring. While this system has performed acceptably for over a decade, it is sparsely documented and robust operational models are unavailable. To ensure the new design meets or exceeds current performance metrics, we analyzed the existing LLRF control system and …


A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber Jul 2017

A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber

Masters Theses

The product of this thesis aims to enable the study of the biochemical and physical dynamics of the lower limbs at high levels of muscle tension and fast contraction speeds. This is accomplished in part by a magnetic resonance (MR) compatible ergometer designed to apply a load as a torque of up to 420 Nm acting against knee extension at speeds as high as 4.7 rad/s. The system can also be adapted to apply the load as a force of up to 1200 N acting against full leg extension. The ergometer is designed to enable the use of magnetic resonance …


A Practical Realization Of A Return Map Immune Lorenz Based Chaotic Stream Cipher In Circuitry, Daniel Robert Brown May 2017

A Practical Realization Of A Return Map Immune Lorenz Based Chaotic Stream Cipher In Circuitry, Daniel Robert Brown

Masters Theses

Some chaotic systems are advantageously capable of self-synchronizing with a like system through a single shared state. Using a plain text binary message, a single system parameter can be modulated to mask this message and transmit it securely through the single shared state. The most simple implementations of this encryption technique are, however, vulnerable to the return map attack. Using a time-scaling factor to further obfuscate the modulation process, a return map attack immunity is gained. We report on the progress towards a realization of this process in real-time analog circuitry using off-the-shelf components.


A Haptic Surface Robot Interface For Large-Format Touchscreen Displays, Mark Price Jul 2016

A Haptic Surface Robot Interface For Large-Format Touchscreen Displays, Mark Price

Masters Theses

This thesis presents the design for a novel haptic interface for large-format touchscreens. Techniques such as electrovibration, ultrasonic vibration, and external braked devices have been developed by other researchers to deliver haptic feedback to touchscreen users. However, these methods do not address the need for spatial constraints that only restrict user motion in the direction of the constraint. This technology gap contributes to the lack of haptic technology available for touchscreen-based upper-limb rehabilitation, despite the prevalent use of haptics in other forms of robotic rehabilitation. The goal of this thesis is to display kinesthetic haptic constraints to the touchscreen user …


Dynamic Extruder Control For Polymer Printing In Big Area Additive Manufacturing, Alex Christopher Roschli May 2016

Dynamic Extruder Control For Polymer Printing In Big Area Additive Manufacturing, Alex Christopher Roschli

Masters Theses

Big Area Additive Manufacturing (BAAM) is 3D Printing on a large scale and can be used to create structures on the scale of cars and houses. Scaling up 3D printing to BAAM size meant fundamentally altering the traditional fused deposition modeling process by switching from a filament to a pellet material feed. This meant switching from a stepper motor extruder to a servo driven screw extruder. While increasing the throughput of the system, this new extruder increases the overall complexity. Effective control of the system is paramount to the success of BAAM enabling it to effectively scale in speed in …


A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder Jul 2015

A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder

Masters Theses

This thesis presents a new mechanical design for an exoskeleton actuator to power the sagittal plane motion in the human hip. The device uses a DC motor to drive a Scotch yoke mechanism and series elasticity to take advantage of the cyclic nature of human gait and to reduce the maximum power and control requirements of the exoskeleton. The Scotch yoke actuator creates a position-dependent transmission that varies between 4:1 and infinity, with the peak transmission ratio aligned to the peak torque periods of the human gait cycle. Simulation results show that both the peak and average motor torque can …


Development And Evaluation Of A Cost Effective Plant Growth Media Moisture Sensor And Development Of An Aqueous Data Transmission System For Irrigation Purposes, Steven Michael Pickett May 2015

Development And Evaluation Of A Cost Effective Plant Growth Media Moisture Sensor And Development Of An Aqueous Data Transmission System For Irrigation Purposes, Steven Michael Pickett

Masters Theses

The ability to accurately monitor and transit the moisture content of soilless growing media in the rooting zone is critical for plant-based research, production of high value crops, and other agricultural production. The focus of this study is the development and evaluation of a cost effective moisture sensor designed to measure the plant-available moisture content of growing media and the development of a aqueous data transmission method for relaying this information back to a central location. While there are currently many commercially available soil moisture sensors on the market, the aim of this research is not to develop a more …


Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings Nov 2014

Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings

Masters Theses

This thesis presents the design of uBot-7, the latest version of a dexterous mobile manipulator. This platform has been iteratively developed to realize a high performance-to-cost dexterous whole body manipulator with respect to mobile manipulation. The semi-anthropomorphic design of the uBot is a demonstrated and functional research platform for developing advanced autonomous perception, manipulation, and mobility tasks. The goal of this work is to improve the uBot’s ability to sense and interact with its environment in order to increase the platforms capability to operate dexterously, through the incorporation of joint torque feedback, and safely, through the implementation of passive and …


Optimal Control Of Energy Efficient Buildings, Cale David Nelson May 2014

Optimal Control Of Energy Efficient Buildings, Cale David Nelson

Masters Theses

The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. Therefore, it is economically and environmentally important to reduce the building energy consumption to realize massive energy savings. Commercial buildings are complex, multi-physics, and highly stochastic dynamic systems. Recent work has focused on integrating modern modeling, simulation, and control techniques to solving this challenging problem. The overall focus of this thesis is directed toward designing an energy efficient building by controlling room temperature. One approach is based on a distributed parameter model represented by a …


Control Law Calculation And Verification Methods For The Variable Stability Navion In-Flight Simulation Aircraft, Joe Ming Yin Siu May 2013

Control Law Calculation And Verification Methods For The Variable Stability Navion In-Flight Simulation Aircraft, Joe Ming Yin Siu

Masters Theses

The University of Tennessee Space Institute’s (UTSI) variable stability research aircraft, Ryan Navion N66UT, was extensively modified by the Princeton University in the 1960’s. When UTSI acquired the aircraft from Princeton, volumes of calibration data, charts, and schematics manuals were transferred to UTSI.

Based on the study and research of available Princeton documents, methods of calculating flight control laws were “reverse-engineered”. The Variable Stability Navion employs an implicit model following structure to achieve in-flight simulation of other aircraft’s flying quality. Mathematical formulas were derived to calculate stability derivative potentiometer settings, for the analog response feedback flight controls system. MATLAB scripts …


Exploration Of Neural Structures For Dynamic System Control, Scott Frederick Hansen Dec 2012

Exploration Of Neural Structures For Dynamic System Control, Scott Frederick Hansen

Masters Theses

Biological neural systems are powerful mechanisms for controlling biological sys- tems. While the complexity of biological neural networks makes exact simulation intractable, several key aspects lend themselves to implementation on computational systems.

This thesis constructs a discrete event neural network simulation that implements aspects of biological neural networks. A combined genetic programming/simulated annealing approach is utilized to design network structures that function as regulators for continuous time dynamic systems in the presence of process noise when simulated using a discrete event neural simulation.

Methods of constructing such networks are analyzed including examination of the final network structure and the algorithm …


Haptic Tele-Operation Of Wheeled Mobile Robot And Unmanned Aerial Vehicle Over The Internet, Zhiyuan Zuo Aug 2011

Haptic Tele-Operation Of Wheeled Mobile Robot And Unmanned Aerial Vehicle Over The Internet, Zhiyuan Zuo

Masters Theses

Teleoperation of ground/aerial vehicle extends operator's ability (e.g. expertise, strength, mobility) into the remote environment, and haptic feedback enhances the human operator's perception of the slave environment. In my thesis, two cases are studied: wheeled mobile robot (MWR) haptic tele-driving over the Internet and unmanned aerial vehicle (UAV) haptic teleoperation over the Internet.
We propose novel control frameworks for both dynamic WMR and kinematic WMR in various tele-driving modes, and for a "mixed" UAV with translational dynamics and attitude kinematics.
The recently proposed passive set-position modulation (PSPM) framework is extended to guarantee the passivity and/or stability of the closed-loop system …


Analytical Computation Of Proper Orthogonal Decomposition Modes And N-Width Approximations For The Heat Equation With Boundary Control, Tasha N. Fernandez Dec 2010

Analytical Computation Of Proper Orthogonal Decomposition Modes And N-Width Approximations For The Heat Equation With Boundary Control, Tasha N. Fernandez

Masters Theses

Model reduction is a powerful and ubiquitous tool used to reduce the complexity of a dynamical system while preserving the input-output behavior. It has been applied throughout many different disciplines, including controls, fluid and structural dynamics. Model reduction via proper orthogonal decomposition (POD) is utilized for of control of partial differential equations. In this thesis, the analytical expressions of POD modes are derived for the heat equation. The autocorrelation function of the latter is viewed as the kernel of a self adjoint compact operator, and the POD modes and corresponding eigenvalues are computed by solving homogeneous integral equations of the …