Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Controls and Control Theory

Design, Modeling And Control Of A Two-Wheel Balancing Robot Driven By Bldc Motors, Charles T. Refvem Dec 2019

Design, Modeling And Control Of A Two-Wheel Balancing Robot Driven By Bldc Motors, Charles T. Refvem

Master's Theses

The focus of this document is on the design, modeling, and control of a self-balancing two wheel robot, hereafter referred to as the balance bot, driven by independent brushless DC (BLDC) motors. The balance bot frame is composed of stacked layers allowing a lightweight, modular, and rigid mechanical design. The robot is actuated by a pair of brushless DC motors equipped with Hall effect sensors and encoders allowing determination of the angle and angular velocity of each wheel. Absolute orientation measurement is accomplished using a full 9-axis IMU consisting of a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer. …


Weight Controlled Electric Skateboard, Zachary Barram, Carson Bertozzi, Vishnu Dodballapur Jun 2019

Weight Controlled Electric Skateboard, Zachary Barram, Carson Bertozzi, Vishnu Dodballapur

Computer Engineering

Technology and the way that humans interact is becoming more vital and omnipresent with every passing day. However, human interface device designers suffer from the increasingly popular “designed for me or people like me” syndrome. This design philosophy inherently limits accessibility and usability of technology to those like the designer. This places severe limits of usability to those who are not fully able as well as leaves non-traditional human interface devices unexplored. This project set out to explore a previously uncharted human interface device, on an electric skateboard, and compare it send user experience with industry leading human interface devices.


Underwater Remotely Operated Vehicle Controller With Pid Stability Regulation, Christian E. Aguirre Jun 2019

Underwater Remotely Operated Vehicle Controller With Pid Stability Regulation, Christian E. Aguirre

Electrical Engineering

The earth’s oceans and rivers remain widely unexplored. Hobbyists and companies across the globe invest money and resources into remotely operated vehicles (ROV) to further expand underwater knowledge. Each ROV includes a controller that operates motors and monitors other crucial system vitals. The ROV Controller project makes the process of designing an ROV simpler and more affordable by providing a multi-purpose programmable controller.

The ROV controller features programmable digital inputs/outputs and analog inputs. The controller processes control signals from analog joysticks, digital signals from a gyroscope and utilizes a MUX to expand the analog input capabilities of the Arduino. The …