Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Controls and Control Theory

Controllability And Observability Of The Discrete Fractional Linear State-Space Model, Duc M. Nguyen Apr 2018

Controllability And Observability Of The Discrete Fractional Linear State-Space Model, Duc M. Nguyen

Masters Theses & Specialist Projects

This thesis aims to investigate the controllability and observability of the discrete fractional linear time-invariant state-space model. First, we will establish key concepts and properties which are the tools necessary for our task. In the third chapter, we will discuss the discrete state-space model and set up the criteria for these two properties. Then, in the fourth chapter, we will attempt to apply these criteria to the discrete fractional model. The general flow of our objectives is as follows: we start with the first-order linear difference equation, move on to the discrete system, then the fractional difference equation, and finally …


Comparison Of Two Distributed Fuzzy Logic Controllers For Flexible-Link Manipulators, Linda Z. Shi, Mohamed Trabia May 2001

Comparison Of Two Distributed Fuzzy Logic Controllers For Flexible-Link Manipulators, Linda Z. Shi, Mohamed Trabia

Mechanical Engineering Faculty Presentations

The paper suggests that fuzzy logic controllers present a computationally efficient and robust alternative to conventional controllers. The paper presents two possible structures for the distributed fuzzy logic controller of a single-link flexible manipulator. A linear quadratic regulator method is used to prove the effectiveness of fuzzy logic controllers.


Design Of Fuzzy Logic Controllers For Optimal Performance, Mohamed Trabia May 2001

Design Of Fuzzy Logic Controllers For Optimal Performance, Mohamed Trabia

Mechanical Engineering Faculty Presentations

While fuzzy logic controllers are generally robust, the performance of a system whose behavior is not well understood, or that has a large number of coupled inputs and outputs, may be less than optimal. In this paper, nonlinear programming techniques are used to improve the performance of a fuzzy logic controller for navigating an autonomous vehicle.