Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Controls and Control Theory

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt Dec 2023

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang May 2023

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang

Electronic Theses and Dissertations

Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large …


Near-Optimal Control Of Switched Systems With Continuous-Time Dynamics Using Approximate Dynamic Programming, Tohid Sardarmehni Apr 2018

Near-Optimal Control Of Switched Systems With Continuous-Time Dynamics Using Approximate Dynamic Programming, Tohid Sardarmehni

Mechanical Engineering Research Theses and Dissertations

Optimal control is a control method which provides inputs that minimize a performance index subject to state or input constraints [58]. The existing solutions for finding the exact optimal control solution such as Pontryagin’s minimum principle and dynamic programming suffer from curse of dimensionality in high order dynamical systems. One remedy for this problem is finding near optimal solution instead of the exact optimal solution to avoid curse of dimensionality [31]. A method for finding the approximate optimal solution is through Approximate Dynamic Programming (ADP) methods which are discussed in the subsequent chapters.

In this dissertation, optimal switching in switched …


Particle Filters For State Estimation Of Confined Aquifers, Graeme Field Jan 2018

Particle Filters For State Estimation Of Confined Aquifers, Graeme Field

UNF Graduate Theses and Dissertations

Mathematical models are used in engineering and the sciences to estimate properties of systems of interest, increasing our understanding of the surrounding world and driving technological innovation. Unfortunately, as the systems of interest grow in complexity, so to do the models necessary to accurately describe them. Analytic solutions for problems with such models are provably intractable, motivating the use of approximate yet still accurate estimation techniques. Particle filtering methods have emerged as a popular tool in the presence of such models, spreading from its origins in signal processing to a diverse set of fields throughout engineering and the sciences including …


Autonomous Quadrotor Collision Avoidance And Destination Seeking In A Gps-Denied Environment, Thomas C. Kirven Jan 2017

Autonomous Quadrotor Collision Avoidance And Destination Seeking In A Gps-Denied Environment, Thomas C. Kirven

Theses and Dissertations--Mechanical Engineering

This thesis presents a real-time autonomous guidance and control method for a quadrotor in a GPS-denied environment. The quadrotor autonomously seeks a destination while it avoids obstacles whose shape and position are initially unknown. We implement the obstacle avoidance and destination seeking methods using off-the-shelf sensors, including a vision-sensing camera. The vision-sensing camera detects the positions of points on the surface of obstacles. We use this obstacle position data and a potential-field method to generate velocity commands. We present a backstepping controller that uses the velocity commands to generate the quadrotor's control inputs. In indoor experiments, we demonstrate that the …


Performance-Robust Dynamic Feedback Control Of Lipschitz Nonlinear Systems, Winston Baker Oct 2016

Performance-Robust Dynamic Feedback Control Of Lipschitz Nonlinear Systems, Winston Baker

Dissertations (1934 -)

This dissertation addresses the dynamic control of nonlinear systems with finite energy noise in the state and measurement equations. Regional eigenvalue assignment (REA) is used to ensure that the state estimate error is driven to zero significantly faster than the state itself. Moreover, the controller is designed for the resulting closed loop system to achieve any one of a set of general performance criteria (GPC). The nonlinear model is assumed to have a Lipschitz nonlinearity both in the state and measurement equations. By using the norm bound of the nonlinearity, the controller is designed to be robust against all nonlinearities …