Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Electrical and Computer Engineering

Spam Detection Using Machine Learning And Deep Learning, Olubodunde Agboola Nov 2022

Spam Detection Using Machine Learning And Deep Learning, Olubodunde Agboola

LSU Doctoral Dissertations

Text messages are essential these days; however, spam texts have contributed negatively to the success of this communication mode. The compromised authenticity of such messages has given rise to several security breaches. Using spam messages, malicious links have been sent to either harm the system or obtain information detrimental to the user. Spam SMS messages as well as emails have been used as media for attacks such as masquerading and smishing ( a phishing attack through text messaging), and this has threatened both the user and service providers. Therefore, given the waves of attacks, the need to identify and remove …


A Deep Learning-Based Approach To Extraction Of Filler Morphology In Sem Images With The Application Of Automated Quality Inspection, Md. Fashiar Rahman, Tzu-Liang Bill Tseng, Jianguo Wu, Yuxin Wen, Yirong Lin Mar 2022

A Deep Learning-Based Approach To Extraction Of Filler Morphology In Sem Images With The Application Of Automated Quality Inspection, Md. Fashiar Rahman, Tzu-Liang Bill Tseng, Jianguo Wu, Yuxin Wen, Yirong Lin

Engineering Faculty Articles and Research

Automatic extraction of filler morphology (size, orientation, and spatial distribution) in Scanning Electron Microscopic (SEM) images is essential in many applications such as automatic quality inspection in composite manufacturing. Extraction of filler morphology greatly depends on accurate segmentation of fillers (fibers and particles), which is a challenging task due to the overlap of fibers and particles and their obscure presence in SEM images. Convolution Neural Networks (CNNs) have been shown to be very effective at object recognition in digital images. This paper proposes an automatic filler detection system in SEM images, utilizing a Mask Region-based CNN architecture. The proposed system …


Ai-Driven Automated Medical Imaging Analysis, Jingya Liu Jan 2022

Ai-Driven Automated Medical Imaging Analysis, Jingya Liu

Dissertations and Theses

Medical imaging has been applied widely in many clinical diagnoses to detect and differentiate abnormalities by revealing the internal structure of the human body at normal anatomical and physiological levels. Manual analyzing medical images demands attention and is time-consuming, requiring well-trained expertise. The speed, fatigue, and experience may limit the diagnostic performance, leading to delays and even false diagnoses that significantly impact patient treatment. Therefore, accurate systematic systems based on medical image analysis are crucial for timely clinical diagnosis.

This dissertation focuses on advancing automatic computer-aided diagnosis systems to detect cancer, assisting radiologists with early intervention to improve survival rates. …


Deep Learning-Guided Prediction Of Material’S Microstructures And Applications To Advanced Manufacturing, Jianan Tang Dec 2021

Deep Learning-Guided Prediction Of Material’S Microstructures And Applications To Advanced Manufacturing, Jianan Tang

All Dissertations

Material microstructure prediction based on processing conditions is very useful in advanced manufacturing. Trial-and-error experiments are very time-consuming to exhaust numerous combinations of processing parameters and characterize the resulting microstructures. To accelerate process development and optimization, researchers have explored microstructure prediction methods, including physical-based modeling and feature-based machine learning. Nevertheless, they both have limitations. Physical-based modeling consumes too much computational power. And in feature-based machine learning, low-dimensional microstructural features are manually extracted to represent high-dimensional microstructures, which leads to information loss.

In this dissertation, a deep learning-guided microstructure prediction framework is established. It uses a conditional generative adversarial network (CGAN) …


Material Evaluation And Structural Monitoring Of Early-Age Masonry Structures, Kyle Dunphy Aug 2020

Material Evaluation And Structural Monitoring Of Early-Age Masonry Structures, Kyle Dunphy

Electronic Thesis and Dissertation Repository

During the initial construction period, “early-age” masonry walls are susceptible to lateral loads induced by wind or earthquake, which may result in damages or catastrophic failures. To mitigate such consequences at construction sites, temporary bracings are adopted to provide lateral support to masonry walls until they are matured enough to serve as the inherent lateral system of the structure. However, current temporary bracing guidelines provide oversimplified design due to the lack of available information on the material properties of early-age masonry. Moreover, there are no existing techniques for monitoring masonry walls to detect cracks due to construction activities. …


Learning In The Machine: To Share Or Not To Share?, Jordan Ott, Erik Linstead, Nicholas Lahaye, Pierre Baldi Mar 2020

Learning In The Machine: To Share Or Not To Share?, Jordan Ott, Erik Linstead, Nicholas Lahaye, Pierre Baldi

Engineering Faculty Articles and Research

Weight-sharing is one of the pillars behind Convolutional Neural Networks and their successes. However, in physical neural systems such as the brain, weight-sharing is implausible. This discrepancy raises the fundamental question of whether weight-sharing is necessary. If so, to which degree of precision? If not, what are the alternatives? The goal of this study is to investigate these questions, primarily through simulations where the weight-sharing assumption is relaxed. Taking inspiration from neural circuitry, we explore the use of Free Convolutional Networks and neurons with variable connection patterns. Using Free Convolutional Networks, we show that while weight-sharing is a pragmatic optimization …


Deep Learning Towards Intelligent Vehicle Fault Diagnosis, Mohammed Al-Zeyadi, Javier Andreu-Perez, Hani Hagras, Chris Royce, Darren Smith, Piotr Rzonsowski, Ali Malik Jan 2020

Deep Learning Towards Intelligent Vehicle Fault Diagnosis, Mohammed Al-Zeyadi, Javier Andreu-Perez, Hani Hagras, Chris Royce, Darren Smith, Piotr Rzonsowski, Ali Malik

Conference papers

Recently, the rapid development of automotive industries has given rise to large multidimensional datasets both in the production sites and after-sale services. Fault diagnostic systems are one of the services that the automotive industries provide. As a consequence of the rapid development of cars features, traditional rule-based diagnostic systems became very limited. Therefore, more sophisticated AI approaches need to be investigated towards more efficient solutions. In this paper, we focus on utilising deep learning so as to build a diagnostic system that is able to estimate the required services in an efficient and effective way. We propose a new model, …


Cluster-Based Chained Transfer Learning For Energy Forecasting With Big Data, Yifang Tian Dec 2019

Cluster-Based Chained Transfer Learning For Energy Forecasting With Big Data, Yifang Tian

Electronic Thesis and Dissertation Repository

Smart meter popularity has resulted in the ability to collect big energy data and has created opportunities for large-scale energy forecasting. Machine Learning (ML) techniques commonly used for forecasting, such as neural networks, involve computationally intensive training typically with data from a single building/group to predict future consumption for that same building/group. With hundreds of thousands of smart meters, it becomes impractical or even infeasible to individually train a model for each meter. Consequently, this paper proposes Cluster-Based Chained Transfer Learning (CBCTL), an approach for building neural network-based models for many meters by taking advantage of already trained models through …


Amodal Instance Segmentation And Multi-Object Tracking With Deep Pixel Embedding, Yanfeng Liu Dec 2019

Amodal Instance Segmentation And Multi-Object Tracking With Deep Pixel Embedding, Yanfeng Liu

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This thesis extends upon the representational output of semantic instance segmentation by explicitly including both visible and occluded parts. A fully convolutional network is trained to produce consistent pixel-level embedding across two layers such that, when clustered, the results convey the full spatial extent and depth ordering of each instance. Results demonstrate that the network can accurately estimate complete masks in the presence of occlusion and outperform leading top-down bounding-box approaches.

The model is further extended to produce consistent pixel-level embeddings across two consecutive image frames from a video to simultaneously perform amodal instance segmentation and multi-object tracking. No post-processing …


Receptive Fields Optimization In Deep Learning For Enhanced Interpretability, Diversity, And Resource Efficiency., Babajide Odunitan Ayinde May 2019

Receptive Fields Optimization In Deep Learning For Enhanced Interpretability, Diversity, And Resource Efficiency., Babajide Odunitan Ayinde

Electronic Theses and Dissertations

In both supervised and unsupervised learning settings, deep neural networks (DNNs) are known to perform hierarchical and discriminative representation of data. They are capable of automatically extracting excellent hierarchy of features from raw data without the need for manual feature engineering. Over the past few years, the general trend has been that DNNs have grown deeper and larger, amounting to huge number of final parameters and highly nonlinear cascade of features, thus improving the flexibility and accuracy of resulting models. In order to account for the scale, diversity and the difficulty of data DNNs learn from, the architectural complexity and …


Multi-Column Neural Networks And Sparse Coding Novel Techniques In Machine Learning, Ammar O. Hoori Jan 2019

Multi-Column Neural Networks And Sparse Coding Novel Techniques In Machine Learning, Ammar O. Hoori

Theses and Dissertations

Accurate and fast machine learning (ML) algorithms are highly vital in artificial intelligence (AI) applications. In complex dataset problems, traditional ML methods such as radial basis function neural network (RBFN), sparse coding (SC) using dictionary learning, and particle swarm optimization (PSO) provide trivial results, large structure, slow training, and/or slow testing. This dissertation introduces four novel ML techniques: the multi-column RBFN network (MCRN), the projected dictionary learning algorithm (PDL) and the multi-column adaptive and non-adaptive particle swarm optimization techniques (MC-APSO and MC-PSO). These novel techniques provide efficient alternatives for traditional ML techniques. Compared to traditional ML techniques, the novel ML …


Multi-Label Latent Spaces With Semi-Supervised Deep Generative Models, Rastin Rastgoufard May 2018

Multi-Label Latent Spaces With Semi-Supervised Deep Generative Models, Rastin Rastgoufard

University of New Orleans Theses and Dissertations

Expert labeling, tagging, and assessment are far more costly than the processes of collecting raw data. Generative modeling is a very powerful tool to tackle this real-world problem. It is shown here how these models can be used to allow for semi-supervised learning that performs very well in label-deficient conditions.

The foundation for the work in this dissertation is built upon visualizing generative models' latent spaces to gain deeper understanding of data, analyze faults, and propose solutions. A number of novel ideas and approaches are presented to improve single-label classification. This dissertation's main focus is on extending semi-supervised Deep Generative …


Respiratory Prediction And Image Quality Improvement Of 4d Cone Beam Ct And Mri For Lung Tumor Treatments, Seonyeong Park Jan 2017

Respiratory Prediction And Image Quality Improvement Of 4d Cone Beam Ct And Mri For Lung Tumor Treatments, Seonyeong Park

Theses and Dissertations

Identification of accurate tumor location and shape is highly important in lung cancer radiotherapy, to improve the treatment quality by reducing dose delivery errors. Because a lung tumor moves with the patient's respiration, breathing motion should be correctly analyzed and predicted during the treatment for prevention of tumor miss or undesirable treatment toxicity. Besides, in Image-Guided Radiation Therapy (IGRT), the tumor motion causes difficulties not only in delivering accurate dose, but also in assuring superior quality of imaging techniques such as four-dimensional (4D) Cone Beam Computed Tomography (CBCT) and 4D Magnetic Resonance Imaging (MRI). Specifically, 4D CBCT used in CBCT …