Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Electrical and Computer Engineering

Series

Electrical Engineering

Articles 1 - 2 of 2

Full-Text Articles in Electrical and Computer Engineering

Investigating The Capacitive Properties Of All-Inorganic Lead Halides Perovskite Solar Cells Using Energy Band Diagrams, Zahraa Ismail, Eman Farouk Sawires, Fathy Zaki Amer, Sameh Osama Abdellatif Dr Jan 2022

Investigating The Capacitive Properties Of All-Inorganic Lead Halides Perovskite Solar Cells Using Energy Band Diagrams, Zahraa Ismail, Eman Farouk Sawires, Fathy Zaki Amer, Sameh Osama Abdellatif Dr

Electrical Engineering

Capacitance response of perovskite solar cells (PSCs) can be oppressed to deduce underlying physical mechanisms, both in the materials at external interfaces and in bulk materials. Accordingly, this paper investigates the Capacitance-Voltage (C-V) characteristic curves of cesium lead halides (CsPbX3: X = I, Br, or Cl) used as an active layer in PSCs. The SCAPS-1D simulator was used to harness the actual device (CsPbX3: X = I Br, or Cl) with material parameters from previous experimental work. The energy-band diagrams, J-V curves, and C-V curves of the three PSC structures were constructed and compared to carry out and investigate their …


Study The C-V Behavior Of Cesium-Lead Halides Perovskite Solar Cells Under Various Simulation Parameters, Zahraa Ismail, Eman Farouk Sawires, Fathy Zaki Amer, Sameh O. Abdellatif Dr Jan 2022

Study The C-V Behavior Of Cesium-Lead Halides Perovskite Solar Cells Under Various Simulation Parameters, Zahraa Ismail, Eman Farouk Sawires, Fathy Zaki Amer, Sameh O. Abdellatif Dr

Electrical Engineering

Capacitance response of perovskite solar cells (PSCs) can be oppressed to deduce underlying physical mechanisms, both in the materials at external interfaces and in bulk materials. Accordingly, this paper investigates the Capacitance-Voltage (C-V) characteristic curves of cesium lead halides (CsPbX3: X = I, Br, or Cl) used as an active layer in PSCs. The SCAPS-1D simulator harnessed the actual device (CsPbX3: X = I Br, or Cl) with material parameters from previous experimental work. Three main simulation parameters were investigated: the thickness of the active layer, the doping, and the defects impacts.