Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Electrical and Computer Engineering

Series

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 363

Full-Text Articles in Electrical and Computer Engineering

A Study On The Incentives And Barriers For The Adoption Of Electric Vehicles In South Alabama, Marianne Loes, Daniela Wolter Ferreira Touma, Jennifer C. Zoghby Feb 2024

A Study On The Incentives And Barriers For The Adoption Of Electric Vehicles In South Alabama, Marianne Loes, Daniela Wolter Ferreira Touma, Jennifer C. Zoghby

Association of Marketing Theory and Practice Proceedings 2024

ABSTRACT

Through a series of public policy incentives and consumer demand, more electric vehicles are being sold nationwide than ever before. Although electric vehicles (EVs) are being adopted nationwide by many consumers in recent years, car-buyers across South Alabama have not followed the trend. This research considers different stakeholders in the complex consumer buying process of car purchases, and it uses the extant technology adoption models to assess the public policy incentives, as well as statewide roadblocks, to EV adoption.


Amorphous Boron Carbide-Amorphous Silicon Heterojunction Devices, Vojislav Medic Dec 2023

Amorphous Boron Carbide-Amorphous Silicon Heterojunction Devices, Vojislav Medic

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation will show successful development and characterization of amorphous boron carbide-amorphous silicon heterojunction device with potential for neutron detection. The amorphous hydrogenated boron carbide (a-BC:H) has been extensively researched as a semiconductor for neutron voltaic device fabrication. Naturally occurring boron contains 19.8% of boron isotope B10 that has a high absorption cross section of thermal neutrons at lower energies, and boron carbide contains 14.7% of that B10 isotope. Therefore, as a semiconductor compound of boron a-BC:H has the ability to absorb radiation, generate charge carriers, and collect those carriers. Previous work on a-BC:H devices investigated the fabrication …


Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz Dec 2023

Low-Power, Event-Driven System On A Chip For Charge Pulse Processing Applications, Joseph A. Schmitz

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation presents an electronic architecture and methodology capable of processing charge pulses generated by a range of sensors, including radiation detectors and tactile synthetic skin. These sensors output a charge signal proportional to the input stimulus, which is processed electronically in both the analog and digital domains. The presented work implements this functionality using an event-driven methodology, which greatly reduces power consumption compared to standard implementations. This enables new application areas that require a long operating time or compact physical dimensions, which would not otherwise be possible. The architecture is designed, fabricated, and tested in the aforementioned applications to …


Inverse Engineering Of Absorption And Scattering In Nanoparticles: A Machine Learning Approach, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri Nov 2023

Inverse Engineering Of Absorption And Scattering In Nanoparticles: A Machine Learning Approach, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

We use a region-specified machine learning approach to inverse design highly absorptive multilayer plasmonic nanoparticles. We demonstrate the design of particles with a wide range of absorption to scattering ratios (i.e., cloaked absorbers and bright absorbers) and for different visible wavelengths.


Furthering Development Of Smart Fabrics To Improve The Accessibility Of Music Therapy, Ellie Nguyen, Daisy Z. Fernandez-Reyes, Franceli L. Cibrian Oct 2023

Furthering Development Of Smart Fabrics To Improve The Accessibility Of Music Therapy, Ellie Nguyen, Daisy Z. Fernandez-Reyes, Franceli L. Cibrian

Engineering Faculty Articles and Research

In this paper, we present the design and development of HarmonicThreads, a smart, cost-effective fabric augmented by generative machine learning algorithms to create music in real time according to the user's interaction. In this manner, we hypothesize that individuals with sensory differences could take advantage of the fabric's flexibility, the music will adapt according to users' interaction, and the affordable hardware we propose will make it more accessible. We follow a design thinking methodology using data from a multidisciplinary team in Mexico and the United States. Then we will close this paper by discussing challenges in developing accessible smart fabrics …


Self-Dual Systems For Backscattering Cancellation, Nasim Mohammadi Estrakhri Oct 2023

Self-Dual Systems For Backscattering Cancellation, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

Using carefully arranged electric and magnetic components, we have recently demonstrated that backscattering from otherwise arbitrarily shaped two- and three-dimensional structures can be fully eliminated. Here, first we investigate the possibility of creating self-dual microwave absorbers that may provide advantages compared to typical commercial magnetoelectric absorbers. Next, we demonstrate that the self-duality condition is not limited to homogenous structures and may be extended to effective material properties, opening the door to realistic implementation of these structures at microwave and optical frequencies.


A Novel Graph Neural Network-Based Framework For Automatic Modulation Classification In Mobile Environments, Pejman Ghasemzadeh May 2023

A Novel Graph Neural Network-Based Framework For Automatic Modulation Classification In Mobile Environments, Pejman Ghasemzadeh

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Automatic modulation classification (AMC) refers to a signal processing procedure through which the modulation type and order of an observed signal are identified without any prior information about the communications setup. AMC has been recognized as one of the essential measures in various communications research fields such as intelligent modem design, spectrum sensing and management, and threat detection. The research literature in AMC is limited to accounting only for the noise that affects the received signal, which makes their models applicable for stationary environments. However, a more practical and real-world application of AMC can be found in mobile environments where …


Unobtrusive Data Collection In Clinical Settings For Advanced Patient Monitoring And Machine Learning, Walker Arce May 2023

Unobtrusive Data Collection In Clinical Settings For Advanced Patient Monitoring And Machine Learning, Walker Arce

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

When applying machine learning to clinical practice, a major hurdle that will be encountered is the lack of available data. While the data collected in clinical therapies is suitable for the types of analysis that are needed to measure and track clinical outcomes, it may not be suitable for other types of analysis. For instance, video data may have poor alignment with behavioral data, making it impossible to extract the videos frames that directly correlate with the observed behavior. Alternatively, clinicians may be exploring new data modalities, such as physiological signal collection, to research methods of improving clinical outcomes that …


Dense & Attention Convolutional Neural Networks For Toe Walking Recognition, Junde Chen, Rahul Soangra, Marybeth Grant-Beuttler, Y. A. Nanehkaran, Yuxin Wen May 2023

Dense & Attention Convolutional Neural Networks For Toe Walking Recognition, Junde Chen, Rahul Soangra, Marybeth Grant-Beuttler, Y. A. Nanehkaran, Yuxin Wen

Physical Therapy Faculty Articles and Research

Idiopathic toe walking (ITW) is a gait disorder where children’s initial contacts show limited or no heel touch during the gait cycle. Toe walking can lead to poor balance, increased risk of falling or tripping, leg pain, and stunted growth in children. Early detection and identification can facilitate targeted interventions for children diagnosed with ITW. This study proposes a new one-dimensional (1D) Dense & Attention convolutional network architecture, which is termed as the DANet, to detect idiopathic toe walking. The dense block is integrated into the network to maximize information transfer and avoid missed features. Further, the attention modules are …


Modeling And Visualization Of Competing Escalation Dynamics: A Multilayer Multiagent Network Approach, Josh Allen May 2023

Modeling And Visualization Of Competing Escalation Dynamics: A Multilayer Multiagent Network Approach, Josh Allen

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Recent advances in military technology, such as hypersonic missiles, which can travel at more than five times the speed of sound and descend quickly into the atmosphere, give world nuclear superpowers a new edge. These advances up the game for nuclear superpowers with an extremely rapid, intense burst of military striking capability to secure upfront gains before encountering potentially overwhelming military confrontation. However, this so-called fait accompli has not been systematically studied by the United States in the perspective of the escalation philosophies of nuclear power competitors, or the mathematical modeling and visualization of multi-modal escalation dynamics. This gap may …


Region-Specified Inverse Design Of Absorption And Scattering In Nanoparticles By Using Machine Learning, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri Apr 2023

Region-Specified Inverse Design Of Absorption And Scattering In Nanoparticles By Using Machine Learning, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

Machine learning provides a promising platform for both forward modeling and the inverse design of photonic structures. Relying on a data-driven approach, machine learning is especially appealing for situations when it is not feasible to derive an analytical solution for a complex problem. There has been a great amount of recent interest in constructing machine learning models suitable for different electromagnetic problems. In this work, we adapt a region-specified design approach for the inverse design of multilayered nanoparticles. Given the high computational cost of dataset generation for electromagnetic problems, we specifically investigate the case of a small training dataset, enhanced …


Counterventions: A Reparative Reflection On Interventionist Hci, Rua Mae Williams, Louanne E. Boyd, Juan E. Gilbert Apr 2023

Counterventions: A Reparative Reflection On Interventionist Hci, Rua Mae Williams, Louanne E. Boyd, Juan E. Gilbert

Engineering Faculty Articles and Research

Research in HCI applied to clinical interventions relies on normative assumptions about which bodies and minds are healthy, valuable, and desirable. To disrupt this normalizing drive in HCI, we define a “counterventional approach” to intervention technology design informed by critical scholarship and community perspectives. This approach is meant to unsettle normative assumptions of intervention as urgent, necessary, and curative. We begin with a historical overview of intervention in HCI and its critics. Then, through reparative readings of past HCI projects in autism intervention, we illustrate the emergent principles of a counterventional approach and how it may manifest research outcomes that …


Para Cima Y Pa’ Abajo: Building Bridges Between Hci Research In Latin America And In The Global North, Pedro Reynolds-Cuéllar, Marisol Wong-Villacres, Karla A. Badillo-Urquiola, Mayra Donaji Barrera-Machuca, Franceli L. Cibrian, Marianela Ciolfi Felice, Carolina Fuentes, Laura Sanely Gaytán-Lugo, Vivian Genaro Motti, Monica Perusquía-Hernández, Oscar A. Lemus Apr 2023

Para Cima Y Pa’ Abajo: Building Bridges Between Hci Research In Latin America And In The Global North, Pedro Reynolds-Cuéllar, Marisol Wong-Villacres, Karla A. Badillo-Urquiola, Mayra Donaji Barrera-Machuca, Franceli L. Cibrian, Marianela Ciolfi Felice, Carolina Fuentes, Laura Sanely Gaytán-Lugo, Vivian Genaro Motti, Monica Perusquía-Hernández, Oscar A. Lemus

Engineering Faculty Articles and Research

The Human-computer Interaction (HCI) community has the opportunity to foster the integration of research practices across the Global South and North to begin overcoming colonial relationships. In this paper, we focus on the case of Latin America (LATAM), where initiatives to increase the representation of HCI practitioners lack a consolidated understanding of the practices they employ, the factors that influence them, and the challenges that practitioners face. To address this knowledge gap, we employ a mixed-methods approach, comprising a survey (66 respondents) and in-depth interviews (19 interviewees). Our analyses characterize a set of research perspectives on how HCI is practiced …


Implementing Commercial Inverse Design Tools For Compact, Phase-Encoded, Plasmonic Digital Logic Devices, Michael Efseaff, Kyle Wynne, Krishna Narayan, Mark C. Harrison Mar 2023

Implementing Commercial Inverse Design Tools For Compact, Phase-Encoded, Plasmonic Digital Logic Devices, Michael Efseaff, Kyle Wynne, Krishna Narayan, Mark C. Harrison

Engineering Faculty Articles and Research

Numerical simulations have become an essential design tool in the field of photonics, especially for nanophotonics. In particular, 3D finite-difference-time-domain (FDTD) simulations are popular for their powerful design capabilities. Increasingly, researchers are developing or using inverse design tools to improve device footprints and performance. These tools often make use of 3D FDTD simulations and the adjoint optimization method. We implement a commercial inverse design tool with these features for several plasmonic devices that push the boundaries of the tool. We design a logic gate with complex design requirements as well as a y-splitter and waveguide crossing. With minimal code changes, …


Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison Mar 2023

Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison

Engineering Faculty Articles and Research

In modern communications networks, data is transmitted over long distances using optical fibers. At nodes in the network, the data is converted to an electrical signal to be processed, and then converted back into an optical signal to be sent over fiber optics. This process results in higher power consumption and adds to transmission time. However, by processing the data optically, we can begin to alleviate these issues and surpass systems which rely on electronics. One promising approach for this is plasmonic devices. Plasmonic waveguide devices have smaller footprints than silicon photonics for more compact photonic integrated circuits, although they …


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


Low-Power Redundant-Transition-Free Tspc Dual-Edge-Triggering Flip-Flop Using Single-Transistor-Clocked Buffer, Zisong Wang, Peiyi Zhao, Tom Springer, Congyi Zhu, Jaccob Mau, Andrew Wells, Yinshui Xia, Lingli Wang Mar 2023

Low-Power Redundant-Transition-Free Tspc Dual-Edge-Triggering Flip-Flop Using Single-Transistor-Clocked Buffer, Zisong Wang, Peiyi Zhao, Tom Springer, Congyi Zhu, Jaccob Mau, Andrew Wells, Yinshui Xia, Lingli Wang

Engineering Faculty Articles and Research

In the modern graphics processing unit (GPU)/artificial intelligence (AI) era, flip-flop (FF) has become one of the most power-hungry blocks in processors. To address this issue, a novel single-phase-clock dual-edge-triggering (DET) FF using a single-transistor-clocked (STC) buffer (STCB) is proposed. The STCB uses a single-clocked transistor in the data sampling path, which completely removes clock redundant transitions (RTs) and internal RTs that exist in other DET designs. Verified by post-layout simulations in 22 nm fully depleted silicon on insulator (FD-SOI) CMOS, when operating at 10% switching activity, the proposed STC-DET outperforms prior state-of-the-art low-power DET in power consumption by 14% …


Development Of Sensing And Programming Activities For Engineering Technology Pathways Using A Virtual Arduino Simulation Platform, Murat Kuzlu, Vukica Jovanovic, Otilia Popescu, Salih Sarp Jan 2023

Development Of Sensing And Programming Activities For Engineering Technology Pathways Using A Virtual Arduino Simulation Platform, Murat Kuzlu, Vukica Jovanovic, Otilia Popescu, Salih Sarp

Engineering Technology Faculty Publications

The Arduino platform has long been an efficient tool in teaching electrical engineering technology, electrical engineering, and computer science concepts in schools and universities and introducing new learners to programming and microcontrollers. Numerous Arduino projects are widely available through the open-source community, and they can help students to have hands-on experience in building circuits and programming electronics with a wide variety of topics that can make learning electrical prototyping fun. The educational fields of electrical engineering and electrical engineering technology need continuous updating to keep up with the continuous evolution of the computer system. Although the traditional Arduino platform has …


Weakly-Supervised Learning Method For The Recognition Of Potato Leaf Diseases, Junde Chen, Xiaofang Deng, Yuxin Wen, Weirong Chen, Adnan Zeb, Defu Zhang Dec 2022

Weakly-Supervised Learning Method For The Recognition Of Potato Leaf Diseases, Junde Chen, Xiaofang Deng, Yuxin Wen, Weirong Chen, Adnan Zeb, Defu Zhang

Engineering Faculty Articles and Research

As a crucial food crop, potatoes are highly consumed worldwide, while they are also susceptible to being infected by diverse diseases. Early detection and diagnosis can prevent the epidemic of plant diseases and raise crop yields. To this end, this study proposed a weakly-supervised learning approach for the identification of potato plant diseases. The foundation network was applied with the lightweight MobileNet V2, and to enhance the learning ability for minute lesion features, we modified the existing MobileNet-V2 architecture using the fine-tuning approach conducted by transfer learning. Then, the atrous convolution along with the SPP module was embedded into the …


A Robust Platform For Mobile Robotics Teaching And Developing Using Arduino’S Integrated Development Environment (Ide) For Programming The Arduino Mega 2560, Sajjad Alhassan Dec 2022

A Robust Platform For Mobile Robotics Teaching And Developing Using Arduino’S Integrated Development Environment (Ide) For Programming The Arduino Mega 2560, Sajjad Alhassan

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In light of the rapid pace at which development happens with modern technology, mobile robots play an important role in our daily lives. This is due to their great importance in facilitating the affairs of life in various economic, commercial, industrial, scientific, and many other fields. In this research and project, we have restructured the microcontroller and system for one of the mobile robots (CEENBOT) that was designed by the University of Nebraska and replaced it with an Arduino Mega 2560.

The purpose of using the Arduino Mega 2560 robot is to provide alternative programming for the CEENBOT platform to …


Low Power Multi-Channel Interface For Charge Based Tactile Sensors, Samuel Hansen Dec 2022

Low Power Multi-Channel Interface For Charge Based Tactile Sensors, Samuel Hansen

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Analog front end electronics are designed in 65 nm CMOS technology to process charge pulses arriving from a tactile sensor array. This is accomplished through the use of charge sensitive amplifiers and discrete time filters with tunable clock signals located in each of the analog front ends. Sensors were emulated using Gaussian pulses during simulation. The digital side of the system uses SAR (successive approximation register) ADCs for sampling of the processed sensor signals.

Adviser: Sina Balkır


A Stacking-Based Misbehavior Detection System In Vehicular Communication Networks, Troy Green Dec 2022

A Stacking-Based Misbehavior Detection System In Vehicular Communication Networks, Troy Green

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Over the past few decades communication systems for vehicles have continued to advance. Communications between these vehicles can be classified into safety related and non safety related messages. An example of a safety related message would be one vehicle warning others of an icy road it encountered, where a non safety related communication would be a passenger streaming a movie. In either case it's important to secure the communications so that the system continues to behave as expected. In this thesis we propose a Misbehavior Detection System (MDS), which is a system that monitors messages sent between vehicles, and detects …


A Low-Power, Low-Area 10-Bit Sar Adc With Length-Based Capacitive Dac, Zhili Pan Dec 2022

A Low-Power, Low-Area 10-Bit Sar Adc With Length-Based Capacitive Dac, Zhili Pan

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

A 2.5 V single-ended 10-bit successive-approximation-register analog-to-digital converter (SAR ADC) based on the TSMC 65 nm CMOS process is designed with the goal of achieving low power consumption (33.63 pJ/sample) and small area (2874 µm^2 ). It utilizes a novel length-based capacitive digital-to-analog converter (CDAC) layout to achieve low total capacitance for power efficiency, and a custom static asynchronous logic to free the dependence on a high-frequency external clock source. Two test chips have been designed and the problems found through testing the first chip are analyzed. Multiple improved versions of the ADC with minor variations are implemented on the …


A Novel Testbed For Evaluation Of Operational Technology Communications Protocols And Their On-Device Implementations, Matthew Boeding Aug 2022

A Novel Testbed For Evaluation Of Operational Technology Communications Protocols And Their On-Device Implementations, Matthew Boeding

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Operational Technology (OT) and Infrastructure Technology (IT) systems are converging with the rapid addition of centralized remote management in OT systems. Previously air-gapped systems are now interconnected through the internet with application-specific protocols. This has led to systems that had limited access points being remotely accessible. In different OT sectors, legacy protocols previously transmitted over serial communication were updated to allow internet communication with legacy devices. New protocols such as IEC-61850 were also introduced for monitoring of different OT resources. The IEC-61850 standard’s Generic Object Oriented Substation Event (GOOSE) protocol outlines the representation and communication of a variety of different …


Femtosecond Laser Surface Processing To Create Self-Organized Micro- And Nano-Scale Features On Composite And Ceramic Materials, Nate Koeppe Aug 2022

Femtosecond Laser Surface Processing To Create Self-Organized Micro- And Nano-Scale Features On Composite And Ceramic Materials, Nate Koeppe

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Femtosecond laser surface processing (FLSP) is applied to a range of materials in this thesis. The materials studied were a carbon fiber reinforced polymer (CFRP), a thermosetting polymer, silicon nitride (Si3N4), and ceramic alumina. The CFRP is a composite material consisting of a thermosetting polymer and carbon fibers. The CFRP are referred to as a composite and the thermosetting polymer is referred to as a resin in this thesis. Alumina can exist in many different forms. The alumina used is 0.5 mm thick nonporous alumina sheets purchased from McMaster-Carr, and will be referred to as alumina …


Classifying Toe Walking Gait Patterns Among Children Diagnosed With Idiopathic Toe Walking Using Wearable Sensors And Machine Learning Algorithms, Rahul Soangra, Yuxin Wen, Hualin Yang, Marybeth Grant-Beuttler Jul 2022

Classifying Toe Walking Gait Patterns Among Children Diagnosed With Idiopathic Toe Walking Using Wearable Sensors And Machine Learning Algorithms, Rahul Soangra, Yuxin Wen, Hualin Yang, Marybeth Grant-Beuttler

Physical Therapy Faculty Articles and Research

Idiopathic toe walking (ITW) is a gait abnormality in which children’s toes touch at initial contact and demonstrate limited or no heel contact throughout the gait cycle. Toe walking results in poor balance, increased risk of falling, and developmental delays among children. Identifying toe walking steps during walking can facilitate targeted intervention among children diagnosed with ITW. With recent advances in wearable sensing, communication technologies, and machine learning, new avenues of managing toe walking behavior among children are feasible. In this study, we investigate the capabilities of Machine Learning (ML) algorithms in identifying initial foot contact (heel strike versus toe …


A Comparison Of Correlation-Agnostic Techniques For Magnetic Navigation, Clark N. Taylor, Josh Hiatt Jul 2022

A Comparison Of Correlation-Agnostic Techniques For Magnetic Navigation, Clark N. Taylor, Josh Hiatt

Faculty Publications

Navigation using a Global Navigation Satellite System (GNSS) is common for autonomous vehicles (ground or air). Unfortunately, GNSS-based navigation solutions are often susceptible to jamming, interference, and a limited number of satellites. A proposed technique to aid in navigation when a GNSS-based system fails is magnetic navigation - navigation using the Earth's magnetic anomaly field. This solution comes with its own set of problems including the need for quality magnetic maps in every area in which magnetic navigation will be used. Many of the currently available magnetic maps are generated from a combination of dated magnetic surveys, resulting in maps …


Modeling And Analysis Of A 12kw Solar-Wind Hybrid Renewable Energy System, Ekaterina Muravleva Jul 2022

Modeling And Analysis Of A 12kw Solar-Wind Hybrid Renewable Energy System, Ekaterina Muravleva

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

The increase in rate of depletion of natural resources in the last decade as well as the increased global focus on climate change has made the transition to renewable resources of energy a priority for various countries and organizations across the globe. The sporadic nature of energy generated by photovoltaic systems and wind energy conversion systems has led to an increased utilization of more reliable hybrid renewable energy systems. A combination of both solar and wind energy-based power generations systems reduces the impact of seasonal variation on the amount of power generated and therefore, can be used under varying weather …


One-Bit Algorithm Considerations For Sparse Pmcw Radar, Ethan Triplett Jul 2022

One-Bit Algorithm Considerations For Sparse Pmcw Radar, Ethan Triplett

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Phase Modulated Continuous Wave (PMCW) radar an emerging technology for autonomous cars. It is more flexible than the current frequency modulated systems, offering better detection resolution, interference mitigation, and future development opportunities. The issue preventing PMCW adoption is the need for high sample-rate analog to digital converters (ADCs). Due to device limits, a large increase in cost and power consumption occurs for every added resolution bit for a given sampling rate. This thesis explores radar detection techniques for few-bit and 1-bit ADC measurements. 1-bit quantization typically results in poor amplitude estimation, which can limit detections if the target signals are …


Project Metamorphosis: Designing A Dynamic Framework For Converting Musical Compositions Into Paintings, Rao Hamza Ali, Grace Fong, Erik Linstead May 2022

Project Metamorphosis: Designing A Dynamic Framework For Converting Musical Compositions Into Paintings, Rao Hamza Ali, Grace Fong, Erik Linstead

Engineering Faculty Articles and Research

The authors present an automated, rule-based system for converting piano compositions into paintings. Using a color-note association scale presented by Edward Maryon in 1919, which correlates 12-tone scale with 12 hues of the color circle, the authors present a simple approach for extracting colors associated with each note played in a piano composition. The authors also describe the color extraction and art generation process in detail, as well as the process for creating “moving art,” which imitates the progression of a musical piece in real time. They share and discuss artworks generated for four well-known piano compositions.