Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

2008

Semiconductor

Articles 1 - 2 of 2

Full-Text Articles in Electrical and Computer Engineering

Combustion Product Characterization Of The Iron-Heated Powders In Thermal Batteries, Jin Chong, Xue-Ping Gao, Ji-Qiang Wang Nov 2008

Combustion Product Characterization Of The Iron-Heated Powders In Thermal Batteries, Jin Chong, Xue-Ping Gao, Ji-Qiang Wang

Journal of Electrochemistry

The combustion products of thermal battery used iron-heated powders have been studied.It is identified by X-ray diffraction(XRD) analysis that the main compositions of the combustion products are Fe、FeO and KCl.The transmission electron microscopy(TEM) shows a typical core-shell structure with un-reacted Fe particle core coated by FeO shell with a shell thickness of around 200 nm.The combusted iron-heated powders exhibit no metal property,which is contrast to previous assumption.Further measurement indicates that at the ambient temperature the combustion products show semiconductor property of the p-type with conductivity in the order of 103 S·cm-1,which is five order lower than that of the iron …


High Performance Zno Varistors Prepared From Nanocrystalline Precursors For Miniaturised Electronic Devices, Suresh Pillai, Declan Mccormack, John Kelly, Raghavendra Ramesh Jan 2008

High Performance Zno Varistors Prepared From Nanocrystalline Precursors For Miniaturised Electronic Devices, Suresh Pillai, Declan Mccormack, John Kelly, Raghavendra Ramesh

Articles

An industrially viable solution-based processing route using minimal amounts of solvent has been used to prepare bulk quantity nanopowders (average particle size 15.3 nm) for the fabrication of ZnO varistors. The xerogels, calcined powders and sintered materials were fully characterised. The preparation of varistors from nanopowders has been optimised by studying the effect of temperature on grain growth, densification and breakdown voltage. The varistors are prepared by sintering at 1050 C for 2 hours, a temperature that is significantly lower than that used in the current industrial process. Highly dense varistor discs prepared from the sintered material produce devices, with …