Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Electrical and Computer Engineering

Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu Dec 2021

Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu

Graduate Theses and Dissertations

Since the early 2000s heavy-metal-free quantum dots (QDs) such as CuInS2/ZnS have attempted to replace CdSe, their heavy-metal-containing counterparts. CuInS2/ZnS is synthesized in a two-step process that involves the fabrication of CuInS2 (CIS) nanocrystals (NCs) followed by the addition of zinc precursors. Instead of the usual core/shell architecture often exhibited by binary QDs, coating CIS QDs results in alloyed and/or partially alloyed cation-exchange (CATEX) QDs. The effect that zinc has on the properties of CIS NCs was studied by incorporating zinc during the first step of the synthesis. Different In:Cu:Zn ratios were employed in this study, maintaining a constant 4:1 …


High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan Dec 2020

High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan

Graduate Theses and Dissertations

Power modules based on wide bandgap (WBG) materials enhance reliability and considerably reduce cooling requirements that lead to a significant reduction in total system cost and weight. Although these innovative properties lead power modules to higher power density, some concerns still need to be addressed to take full advantage of WBG-based modules. For example, the use of bulky transformers as a galvanic isolation system to float the high voltage gate driver limits further size reduction of the high-temperature power modules. Bulky transformers can be replaced by integrating high-temperature optocouplers to scale down power modules further and achieve disrupting performance in …


Thermal Transport Modeling Of Semiconductor Materials From First Principles, Aliya Qureshi Aug 2020

Thermal Transport Modeling Of Semiconductor Materials From First Principles, Aliya Qureshi

Masters Theses

Over the past few years, the size of semiconductor devices has been shrinking whereas the density of transistors has exponentially increased. Thus, thermal management has become a serious concern as device performance and reliability is greatly affected by heat. An understanding of thermal transport properties at device level along with predictive modelling can lead us to design of new systems and materials tailored according to the thermal conductivity. In our work we first review different models used to calculate thermal conductivity and examine their accuracy using the experimentally measured thermal conductivity for Si. Our results suggest that empirically calculated rates …


Triple-Junction Solar Cells : In Parallel., Levi C Mays Aug 2019

Triple-Junction Solar Cells : In Parallel., Levi C Mays

Electronic Theses and Dissertations

This paper looks into the current inefficiency of solar cells and attempts a few alternative solar cell structures in order to provide a more effective source of renewable energy. Currently, multi-junction solar cells are being developed to capture the sun’s light more efficiently. One of the ideas in this paper is to add a window to see if the addition of such a layer into a junction will increase the voltage while maintaining nearly the same current output. Central to this paper is the rearranging of the conducting layers of the multi-junction cell so that the junctions can be connected …


Growth And Behaviors Of Inn/Gan Multiple Quantum Wells By Plasma-Assisted Molecular Beam Epitaxy, Chen Li Dec 2018

Growth And Behaviors Of Inn/Gan Multiple Quantum Wells By Plasma-Assisted Molecular Beam Epitaxy, Chen Li

Graduate Theses and Dissertations

Fully realizing the potential of InGaN semiconductors requires high quality materials with arbitrary In-content. To this date the growth of In-rich InGaN films is still challenging since it suffers from the low growth temperatures and many detrimental alloying problems. InN/GaN multiple quantum wells (MQWs) and super lattices (SLs) are expected to be promising alternatives to random InGaN alloys since in principle they can achieve the equivalent band gap of InGaN random alloys with arbitrarily high In-content and at the same time bypass many growth difficulties.

This dissertation focuses on studying the growth mechanisms, structural properties and energy structures of InN/GaN …


Properties Of Matter, Mike Jackson, Holly Haney Jul 2018

Properties Of Matter, Mike Jackson, Holly Haney

High School Lesson Plans

Students will investigate the relationship(s) between thermal and electrical properties of matter. First, students will use a multimeter and temperature probe to investigate the relationship between electrical resistance and temperature of an electrical resistor composed of metals. They will then graph collected data to analyze the relationship and draw a conclusion as to their relationship. They will then perform the same investigation on a thermal resistor made of a semiconducting substance and analyze that collected data. Finally, using ClaimEvidence-Reasoning (CER) structure, students will use their experimental evidence to state the similarities and differences between the electro-thermal properties of metals and …


Small-Signal-Stability Enhancement Using A Power-System Stabilizer Based On The Cuckoo-Search Algorithm Against Contingency N-1 In The Sulselrabar 150-Kv System, Muhammad Ruswandi Djalal, Muhammad Yusuf Yunus, Herlambang Setiadi, Awan Uji Krismanto Apr 2018

Small-Signal-Stability Enhancement Using A Power-System Stabilizer Based On The Cuckoo-Search Algorithm Against Contingency N-1 In The Sulselrabar 150-Kv System, Muhammad Ruswandi Djalal, Muhammad Yusuf Yunus, Herlambang Setiadi, Awan Uji Krismanto

Makara Journal of Technology

Small-signal stability is one of the main factors limiting power transmission in conventional power systems. This concern is primarily handled by adding damper windings of a synchronous generator and power-system stabilizer (PSS). However, due to the impact of the N-1 contingency, damper windings and a conventional PSS are insufficient to overcome this problem. Proper placement and design of the PSS are crucial for improving stability. One approach to optimizing the placement and tuning of the PSS is to use an artificial-intelligence method. Here, the cuckoo-search algorithm (CSA) is proposed to optimize the PSS tuning and placement. Based on simulation, it …


Study On Semiconductor Properties Of Acetylide-Thiourea Fabricated Onto Interdigitated Electrodes (Ides) Platform Towards Application In Gas Sensing Technology, Adibah Izzati Daud, Wan M. Khairul, M. I. N. Isa, Khairul Anuar Abdul Wahid Dec 2017

Study On Semiconductor Properties Of Acetylide-Thiourea Fabricated Onto Interdigitated Electrodes (Ides) Platform Towards Application In Gas Sensing Technology, Adibah Izzati Daud, Wan M. Khairul, M. I. N. Isa, Khairul Anuar Abdul Wahid

Makara Journal of Technology

In the past few decades, the unique properties of acetylide and thiourea moieties individually have attracted great attention from researchers in various fields to be developed in numerous applications in advanced materials technology, especially as an active layer in gas sensing devices. The molecular systems of acetylide and thiourea provide a wide range of electronic properties as they possess rigid π-systems in their designated structures. In this study, a derivative of acetylide-thiourea featuring N-(4[4-aminophenyl] ethynyl benzonitrile)-N’-(4-ethyl benzoyl) thiourea (TCN) has been synthesised with the general formula of ArC(O)NHC(S)NHC≡C)Ar adopted the system of D-π-A for the significant development of conductive materials. …


Assessment On Heck-Immine Derivatives As Organic Semiconductor Materials, Rafizah Rahamathullah, Lim Keemi, Wan M. Khairul Dec 2017

Assessment On Heck-Immine Derivatives As Organic Semiconductor Materials, Rafizah Rahamathullah, Lim Keemi, Wan M. Khairul

Makara Journal of Technology

This paper reports the synthetic, characterization and theoretical evaluation of new class of hybrid Heck-immine system involving mixed moieties of vinylene (C=C) and azomethines (CH=N) which has been successfully integrated into an addition of organic semiconducting materials. The assessment of 4-[(hexyloxyphenyl)methylene]amino)-4’-chloro-stilbene (HEXCS) based on Donor (D)-π-Acceptor (A) was evaluated as active semiconductor material candidates via several spectroscopic and analytical techniques. In turn, the investigation of its potential as dopant system in conductive film was successfully deposited on indium tin oxide (ITO) coated substrate via spin coating method. The relationship between electronic and optical properties, chemical modelling at molecular interactions and …


Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson Aug 2017

Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon …


Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum Dec 2016

Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum

Open Access Dissertations

In the past decade, there have been many breakthroughs in the field of plasmonics and nanophotonics that have enabled optical devices with unprecedented functionalities. Even though remarkable demonstration of at photonic devices has been reported, constituent materials are limited to the noble metals such as gold (Au) and silver (Ag) due to their abundance of free electrons which enable the support of plasmon resonances in the visible range. With the strong demand for extension of the optical range of plasmonic applications, it is now a necessity to explore and develop alternative materials which can overcome intrinsic issues of noble metals …


Semiconductor Thermal Neutron Detector, Toru Aoki, Aki Miyake, Takayuki Nakano, Akifumi Koike, Hisashi Morii, Hidenori Mimura Dec 2013

Semiconductor Thermal Neutron Detector, Toru Aoki, Aki Miyake, Takayuki Nakano, Akifumi Koike, Hisashi Morii, Hidenori Mimura

Makara Journal of Technology

The CdTe and GaN detector with a Gd converter have been developed and investigated as a neutron detector for neutron imaging. The fabricated Gd/CdTe detector with the 25 mm thick Gd was designed on the basis of simulation results of thermal neutron detection efficiency and spatial resolution. The Gd/CdTe detector shows the detection of neutron capture gamma ray emission in the 155Gd(n, g)156Gd, 157Gd(n, g)158Gd and 113Cd(n, g)114Cd reactions and characteristic X-ray emissions due to conversion-electrons generated inside the Gd film. The observed efficient thermal neutron detection with the Gd/CdTe detector shows its promise in neutron radiography application. Moreover, a …


The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride Jun 2012

The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride

Master's Theses

Previous research in InGaN/GaN light emitting diodes (LEDs) employing semi-classical drift-diffusion models has used reduced polarization constants without much physical explanantion. This paper investigates possible physical explanations for this effective polarization reduction in InGaN LEDs through the use of the simulation software SiLENSe. One major problem of current LED simulations is the assumption of perfectly discrete transitions between the quantum well (QW) and blocking layers when experiments have shown this to not be the case. The In concentration profile within InGaN multiple quantum well (MQW) devices shows much smoother and delayed transitions indicative of indium diffusion and drift during …


Combustion Product Characterization Of The Iron-Heated Powders In Thermal Batteries, Jin Chong, Xue-Ping Gao, Ji-Qiang Wang Nov 2008

Combustion Product Characterization Of The Iron-Heated Powders In Thermal Batteries, Jin Chong, Xue-Ping Gao, Ji-Qiang Wang

Journal of Electrochemistry

The combustion products of thermal battery used iron-heated powders have been studied.It is identified by X-ray diffraction(XRD) analysis that the main compositions of the combustion products are Fe、FeO and KCl.The transmission electron microscopy(TEM) shows a typical core-shell structure with un-reacted Fe particle core coated by FeO shell with a shell thickness of around 200 nm.The combusted iron-heated powders exhibit no metal property,which is contrast to previous assumption.Further measurement indicates that at the ambient temperature the combustion products show semiconductor property of the p-type with conductivity in the order of 103 S·cm-1,which is five order lower than that of the iron …


High Performance Zno Varistors Prepared From Nanocrystalline Precursors For Miniaturised Electronic Devices, Suresh Pillai, Declan Mccormack, John Kelly, Raghavendra Ramesh Jan 2008

High Performance Zno Varistors Prepared From Nanocrystalline Precursors For Miniaturised Electronic Devices, Suresh Pillai, Declan Mccormack, John Kelly, Raghavendra Ramesh

Articles

An industrially viable solution-based processing route using minimal amounts of solvent has been used to prepare bulk quantity nanopowders (average particle size 15.3 nm) for the fabrication of ZnO varistors. The xerogels, calcined powders and sintered materials were fully characterised. The preparation of varistors from nanopowders has been optimised by studying the effect of temperature on grain growth, densification and breakdown voltage. The varistors are prepared by sintering at 1050 C for 2 hours, a temperature that is significantly lower than that used in the current industrial process. Highly dense varistor discs prepared from the sintered material produce devices, with …


Template Synthesis And Uv-Vis Absorption Spectra Of The Nanowire Arrays Of Cadmium Chalcogenides May 2000

Template Synthesis And Uv-Vis Absorption Spectra Of The Nanowire Arrays Of Cadmium Chalcogenides

Journal of Electrochemistry

XU Shi_min, XUE Kuan_hong , KONG Jing_lin, SUN Dong_mei, FENG Yu_ying, LU Hai_yan (Dept. of Chem., Nanjing Normal Univ., Nanjing 210097, China) WANG Guang_hou (National Laboratory of Solid State Microstructures, Nanjing Univ., Nanjing 210093, China)The porous alumina membrane formed in the anodic oxidation of highly pure aluminum foil has attracted a great deal of attention in recent years [1] . It can be served as a desired template to prepare nanometer scale materials [2] due to its unique structure of discrete and cylindrical nanopores, paralleled one another, with the homogeneous size and distribution [3] . Chalcogenide semiconductors have promising prospect …