Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Electrical and Computer Engineering

Modeling Hydration Kinetics Of Sustainable Cementitious Binders Using An Advanced Nucleation And Growth Approach, Taihao Han, Jie Huang, Gaurav Sant, Narayanan Neithalath, Ashutosh Goel, Aditya Kumar Nov 2023

Modeling Hydration Kinetics Of Sustainable Cementitious Binders Using An Advanced Nucleation And Growth Approach, Taihao Han, Jie Huang, Gaurav Sant, Narayanan Neithalath, Ashutosh Goel, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Supplementary cementitious materials (SCMs) are utilized to partially substitute Portland cement (PC) in binders, reducing carbon-footprint and maintaining excellent performance. Nonetheless, predicting the hydration kinetics of [PC + SCM] binders is challenging for current analytical models due to the extensive diversity of chemical compositions and molecular structures present in both SCMs and PC. This study develops an advanced phase boundary nucleation and growth (pBNG) model to yield a priori predictions of hydration kinetics—i.e., time-resolved exothermic heat release profiles—of [PC + SCM] binders. The advanced pBNG model integrates artificial intelligence as an add-on, enabling it to accurately simulate hydration kinetics for …


Boosting Snr Of Cascaded Fbgs In A Sapphire Fiber Through A Rapid Heat Treatment, Farhan Mumtaz, Hanok Tekle, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang Nov 2023

Boosting Snr Of Cascaded Fbgs In A Sapphire Fiber Through A Rapid Heat Treatment, Farhan Mumtaz, Hanok Tekle, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This Letter reports the performance of femtosecond (fs) laser-written distributed fiber Bragg gratings (FBGs) under high-temperature conditions up to 1600°C and explores the impact of rapid heat treatment on signal-to-noise ratio (SNR) enhancement. FBGs are essential for reliable optical sensing in extreme temperature environments. Comprehensive tests demonstrate the remarkable performance and resilience of FBGs at temperatures up to 1600°C, confirming their suitability for deployment in such conditions. The study also reveals significant fringe visibility improvements of up to ∼10 dB on a 1-m-long sapphire optical fiber through rapid heat treatment, representing a first-time achievement to the best of our knowledge. …


On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar Oct 2023

On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar

Materials Science and Engineering Faculty Research & Creative Works

Limestone calcined clay cement (LC3) is a sustainable alternative to ordinary Portland cement, capable of reducing the binder's carbon footprint by 40% while satisfying all key performance metrics. The inherent compositional heterogeneity in select components of LC3, combined with their convoluted chemical interactions, poses challenges to conventional analytical models when predicting mechanical properties. Although some studies have employed machine learning (ML) to predict the mechanical properties of LC3, many have overlooked the pivotal role of feature selection. Proper feature selection not only refines and simplifies the structure of ML models but also enhances these models' prediction performance and interpretability. This …


Large-Scale Cascading Of First-Order Fbg Array In A Highly Multimode Coreless Fiber Using Femtosecond Laser For Distributed Thermal Sensing, Farhan Mumtaz, Bohong Zhang, Ronald J. O'Malley, Jie Huang Aug 2023

Large-Scale Cascading Of First-Order Fbg Array In A Highly Multimode Coreless Fiber Using Femtosecond Laser For Distributed Thermal Sensing, Farhan Mumtaz, Bohong Zhang, Ronald J. O'Malley, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This research focuses on the performance analysis and characterization of a fiber Bragg gratings (FBGs) array, consisting of 10 first order FBGs inscribed by a femtosecond (FS) laser in a highly multimode coreless fiber. The study evaluates the FBG array's ability to function as a distributed thermal sensing (DTS) platform, with the coreless fiber chosen as the sensing element due to its immunity to dopant migration at high temperatures. The design of a large cascaded first-order FBG array effectively eliminates unwanted harmonic peaks across a wide spectrum range. In contrast, higher-order FBGs introduce limitations due to the overlapping of Bragg …


Temperature Monitoring In The Refractory Lining Of A Continuous Casting Tundish Using Distributed Optical Fiber Sensors, Muhammad Roman, Hanok Tekle, Dinesh Reddy Alla, Farhan Mumtaz, Jeffrey D. Smith, Laura Bartlett, Ronald J. O'Malley, Rex E. Gerald, Jie Huang Jan 2023

Temperature Monitoring In The Refractory Lining Of A Continuous Casting Tundish Using Distributed Optical Fiber Sensors, Muhammad Roman, Hanok Tekle, Dinesh Reddy Alla, Farhan Mumtaz, Jeffrey D. Smith, Laura Bartlett, Ronald J. O'Malley, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

This Article Explores the Prospects of using Spatially Distributed Optical Fiber Temperature Sensors based on Rayleigh Optical Frequency Domain Reflectometry (OFDR) Technology in the Continuous Casting of Molten Steel. the Measurement Capability of the Optical Fiber Sensors in a Simulated Steelmaking Environment Was Demonstrated using a Mock Refractory-Lined Tundish, Which Was Fabricated In-House. Single-Mode Optical Fibers, Contained in Protective Stainless-Steel Tubing, Were Embedded in the Refractory Lining of the Mock Tundish. the Instrumented Tundish Was Preheated Up to a Temperature of 960 °C (Recorded at the Surface of the Working Lining) Before the Molten Steel Pour. a Low-Alloy Steel (AISI …


A Study On The Impact Of Silicon And Manganese On Peritectic Behavior In Low Alloy Steels Assisted By Mold Thermal Mapping Technology And Shell Growth Measurements, Damilola Balogun, Muhammad Roman, Rex E. Gerald, Laura Bartlett, Jie Huang, Ronald O'Malley Jan 2023

A Study On The Impact Of Silicon And Manganese On Peritectic Behavior In Low Alloy Steels Assisted By Mold Thermal Mapping Technology And Shell Growth Measurements, Damilola Balogun, Muhammad Roman, Rex E. Gerald, Laura Bartlett, Jie Huang, Ronald O'Malley

Materials Science and Engineering Faculty Research & Creative Works

Non-Uniform Shell Growth Commonly Caused by the Peritectic Transformation in Low Carbon and Low Alloy Steels Has Been Directly Correlated with Mold Thermal Maps using a Mold Immersion Test into a Molten Steel Alloy. Mold Thermal Maps Were Obtained by Performing Real-Time Temperature Measurements with Optical Fibers Embedded 1 Mm from the Mold Working Surface. Shell Growth Measurements Were Obtained by 3D Optical Scanning of the Recovered Steel Shell Following Immersion Testing. the Effects of Silicon and Manganese on the Shell Growth and Mold Temperature Maps Have Been Examined in Relation to the Peritectic Transformation for Varying Carbon Contents. Results …


Cascaded Sapphire Fiber Bragg Gratings Inscribed By Femtosecond Laser For Molten Steel Studies, Dinesh Reddy Alla, Deva Prasad Neelakandan, Farhan Mumtaz, Rex E. Gerald, Laura Bartlett, Ronald J. O'Malley, Jeffrey D. Smith, Jie Huang Jan 2023

Cascaded Sapphire Fiber Bragg Gratings Inscribed By Femtosecond Laser For Molten Steel Studies, Dinesh Reddy Alla, Deva Prasad Neelakandan, Farhan Mumtaz, Rex E. Gerald, Laura Bartlett, Ronald J. O'Malley, Jeffrey D. Smith, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This research reports a distributed fiber optic high-temperature sensing system tailored for applications in the steel industry and various other sectors. Recent advancements in optical sensor technology have led to the exploration of sapphire crystal fibers as a solution for sensing in harsh environments. Utilizing a femtosecond (fs) laser, cascaded fiber Bragg gratings (FBGs) were meticulously fabricated within a multimode sapphire optical fiber. These FBGs endowed the system with distributed sensing capabilities and underwent rigorous testing under extreme temperatures, reaching up to 1,800 °C. The study delves into the investigation of the FBG reflection spectrum, facilitated by the development of …


Predicting Dissolution Kinetics Of Tricalcium Silicate Using Deep Learning And Analytical Models, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar Jan 2023

Predicting Dissolution Kinetics Of Tricalcium Silicate Using Deep Learning And Analytical Models, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

The dissolution kinetics of Portland cement is a critical factor in controlling the hydration reaction and improving the performance of concrete. Tricalcium silicate (C3S), the primary phase in Portland cement, is known to have complex dissolution mechanisms that involve multiple reactions and changes to particle surfaces. As a result, current analytical models are unable to accurately predict the dissolution kinetics of C3S in various solvents when it is undersaturated with respect to the solvent. This paper employs the deep forest (DF) model to predict the dissolution rate of C3S in the undersaturated solvent. The …


Predicting Compressive Strength And Hydration Products Of Calcium Aluminate Cement Using Data-Driven Approach, Sai Akshay Ponduru, Taihao Han, Jie Huang, Aditya Kumar Jan 2023

Predicting Compressive Strength And Hydration Products Of Calcium Aluminate Cement Using Data-Driven Approach, Sai Akshay Ponduru, Taihao Han, Jie Huang, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Calcium aluminate cement (CAC) has been explored as a sustainable alternative to Portland cement, the most widely used type of cement. However, the hydration reaction and mechanical properties of CAC can be influenced by various factors such as water content, Li2CO3 content, and age. Due to the complex interactions between the precursors in CAC, traditional analytical models have struggled to predict CAC binders' compressive strength and porosity accurately. To overcome this limitation, this study utilizes machine learning (ML) to predict the properties of CAC. The study begins by using thermodynamic simulations to determine the phase assemblages of …


In Situ And Real-Time Mold Flux Analysis Using A High-Temperature Fiber-Optic Raman Sensor For Steel Manufacturing Applications, Bohong Zhang, Hanok Tekle, Ronald J. O'Malley, Todd Sander, Jeffrey D. Smith, Rex E. Gerald, Jie Huang Jan 2023

In Situ And Real-Time Mold Flux Analysis Using A High-Temperature Fiber-Optic Raman Sensor For Steel Manufacturing Applications, Bohong Zhang, Hanok Tekle, Ronald J. O'Malley, Todd Sander, Jeffrey D. Smith, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

Continuous Casting in Steel Production Uses Specially Developed Oxyfluoride Glasses (Mold Fluxes) to Lubricate a Mold and Control the Solidification of the Steel in the Mold. the Composition of the Flux Impacts Properties, Including Basicity, Viscosity, and Crystallization Rate, All of Which Affect the Stability of the Casting Process and the Quality of the Solidified Steel. However, Mold Fluxes Interact with Steel during the Casting Process, Resulting in Flux Chemistry Changes that Must Be Considered in the Flux Design. Currently, the Chemical Composition of Mold Flux Must Be Determined by Extracting Flux Samples from the Mold during Casting and Then …


In Situ High-Temperature Raman Spectroscopy Via A Remote Fiber-Optic Raman Probe, Bohong Zhang, Hanok Tekle, Ronald J. O'Malley, Jeffrey D. Smith, Rex E. Gerald, Jie Huang Jan 2023

In Situ High-Temperature Raman Spectroscopy Via A Remote Fiber-Optic Raman Probe, Bohong Zhang, Hanok Tekle, Ronald J. O'Malley, Jeffrey D. Smith, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

This Study Demonstrated for the First Time an in Situ High-Temperature Fiber-Optic Raman Probe to Study the Structure of Glass and Slag Samples at Temperatures Up to 1400 °C. a Customized External Telescope Was Integrated into a Portable Fiber-Optic Raman Probe to Extend the Optical Working Distance to Allow the Probe to Work in a High-Temperature Environment. Three Samples Were Evaluated to Demonstrate the Functionality of the High-Temperature Fiber-Optic Raman Probe. Room Temperature and High-Temperature Raman Spectra Were Successfully Collected and Analyzed. in Addition, a Deconvolution Algorithm Was Used to Identify Peaks in the Spectrum that Could Then Be Related …


Real-Time Air Gap And Thickness Measurement Of Continuous Caster Mold Flux By Extrinsic Fabry-Perot Interferometer, Abhishek Prakash Hungund, Hanok Tekle, Bohong Zhang, Ronald J. O'Malley, Jeffrey D. Smith, Rex E. Gerald, Jie Huang Jan 2023

Real-Time Air Gap And Thickness Measurement Of Continuous Caster Mold Flux By Extrinsic Fabry-Perot Interferometer, Abhishek Prakash Hungund, Hanok Tekle, Bohong Zhang, Ronald J. O'Malley, Jeffrey D. Smith, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

Mold Flux plays a critical role in continuous casting of steel. Along with many other functions, the mold flux in the gap between the solidifying steel shell and the mold serves as a medium for controlling heat transfer and as a barrier to prevent shell sticking to the mold. This manuscript introduces a novel method of monitoring the structural features of a mold flux film in real-time in a simulated mold gap. A 3-part stainless-steel mold was designed with a 2 mm, 4 mm and, 6 mm step profile to contain mold flux films of varying thickness. An Extrinsic Fabry-Perot …


Advancing Aluminum Casting Optimization With Real-Time Temperature And Gap Measurements Using Optical Fiber Sensors At The Metal-Mold Interface, Bohong Zhang, Abhishek Prakash Hungund, Dinesh Reddy Alla, Deva Prasaad Neelakandan, Muhammad Roman, Ronald J. O'Malley, Laura Bartlett, Rex E. Gerald, Jie Huang Jan 2023

Advancing Aluminum Casting Optimization With Real-Time Temperature And Gap Measurements Using Optical Fiber Sensors At The Metal-Mold Interface, Bohong Zhang, Abhishek Prakash Hungund, Dinesh Reddy Alla, Deva Prasaad Neelakandan, Muhammad Roman, Ronald J. O'Malley, Laura Bartlett, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

Accurate measurement of interfacial heat transfer during casting solidification is crucial for optimizing metal solidification processes. The gap between the mold wall and the casting surface plays a significant role in heat transfer and cooling rates. In this study, two innovative fiber-optic sensors are employed to measure real-time mold gaps and thermal profiles during the solidification of A356 aluminum in a permanent mold casting. The experimental setup consists of a specially designed mold system made of unheated, uncoated tool steel, which facilitates easy installation of the fiber-optic sensors. An Extrinsic Fabry-Perot interferometric (EFPI) sensor is utilized to monitor the evolving …