Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Missouri University of Science and Technology

Articles 1 - 30 of 48

Full-Text Articles in Electrical and Computer Engineering

On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath Mar 2024

On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath

Electrical and Computer Engineering Faculty Research & Creative Works

The escalating production of mine tailings (MT), a byproduct of the mining industry, constitutes significant environmental and health hazards, thereby requiring a cost-effective and sustainable solution for its disposal or reuse. This study proposes the use of MT as the primary ingredient (≥70%mass) in binders for construction applications, thereby ensuring their efficient upcycling as well as drastic reduction of environmental impacts associated with the use of ordinary Portland cement (OPC). The early-age hydration kinetics and compressive strength of MT-based binders are evaluated with an emphasis on elucidating the influence of alkali activation parameters and the amount of slag or cement …


Toward Smart And Sustainable Cement Manufacturing Process: Analysis And Optimization Of Cement Clinker Quality Using Thermodynamic And Data-Informed Approaches, Jardel P. Gonçalves, Taihao Han, Gaurav Sant, Narayanan Neithalath, Jie Huang, Aditya Kumar Mar 2024

Toward Smart And Sustainable Cement Manufacturing Process: Analysis And Optimization Of Cement Clinker Quality Using Thermodynamic And Data-Informed Approaches, Jardel P. Gonçalves, Taihao Han, Gaurav Sant, Narayanan Neithalath, Jie Huang, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Cement manufacturing is widely recognized for its harmful impacts on the natural environment. In recent years, efforts have been made to improve the sustainability of cement manufacturing through the use of renewable energy, the capture of CO2 emissions, and partial replacement of cement with supplementary cementitious materials. To further enhance sustainability, optimizing the cement manufacturing process is essential. This can be achieved through the prediction and optimization of clinker phases in relation to chemical compositions of raw materials and manufacturing conditions. Cement clinkers are produced by heating raw materials in kilns, where both raw material compositions and processing conditions …


Understanding Roles And Evaluating Reactivity Of Fly Ashes In Calcium Aluminate Binders, Sai Akshay Ponduru, Taihao Han, Jie Huang, Narayanan Neithalath, Gaurav Sant, Aditya Kumar Feb 2024

Understanding Roles And Evaluating Reactivity Of Fly Ashes In Calcium Aluminate Binders, Sai Akshay Ponduru, Taihao Han, Jie Huang, Narayanan Neithalath, Gaurav Sant, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Calcium aluminate cement (CAC) is an alternative to Portland cement, valued for its superior early strength and thermal resistance. Partially replacing CAC with Fly ash (FA) can reduce carbon footprint and production costs of CAC, producing sustainable cementitious binders. This research investigates on various properties (i.e., hydration kinetics; phase assemblage evolution; compressive strength) of [CAC + FA] binders. Using 13 distinct FAs, up to 50% of CAC was substituted. The study measures hydration kinetics, compressive strength, and employs the number of constraints to estimate FA reactivity. Advanced quantitative analysis draws links between hydration kinetics and compressive strength and elucidate the …


Ultra-Fast Annealing Improves Snr And Long-Term Stability Of A Highly Multiplexed Line-By-Line Fbg Array Inscribed By Femtosecond Laser In A Coreless Fiber For Extreme-Temperature Applications, Farhan Mumtaz, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang Jan 2024

Ultra-Fast Annealing Improves Snr And Long-Term Stability Of A Highly Multiplexed Line-By-Line Fbg Array Inscribed By Femtosecond Laser In A Coreless Fiber For Extreme-Temperature Applications, Farhan Mumtaz, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This study reports the fabrication of an 4th-order line-by-line Fiber Bragg Gratings (FBG) array using femtosecond laser inscription within a highly multimode coreless optical fiber, with a particular focus on achieving substantial multiplexing capabilities. An ultra-fast annealing procedure is employed, resulting in an impressive enhancement of the FBG sensor's fringe visibility by approximately 13 dB, signifying a notable improvement of approximately ~4 dB. This substantial enhancement contributes to the long-term stability and performance of the multiplexed FBG array in extreme temperature conditions. The systematic fabrication approach employed for the multiplexed FBG array guarantees a high signal-to-noise ratio (SNR) for each …


Modeling Hydration Kinetics Of Sustainable Cementitious Binders Using An Advanced Nucleation And Growth Approach, Taihao Han, Jie Huang, Gaurav Sant, Narayanan Neithalath, Ashutosh Goel, Aditya Kumar Nov 2023

Modeling Hydration Kinetics Of Sustainable Cementitious Binders Using An Advanced Nucleation And Growth Approach, Taihao Han, Jie Huang, Gaurav Sant, Narayanan Neithalath, Ashutosh Goel, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Supplementary cementitious materials (SCMs) are utilized to partially substitute Portland cement (PC) in binders, reducing carbon-footprint and maintaining excellent performance. Nonetheless, predicting the hydration kinetics of [PC + SCM] binders is challenging for current analytical models due to the extensive diversity of chemical compositions and molecular structures present in both SCMs and PC. This study develops an advanced phase boundary nucleation and growth (pBNG) model to yield a priori predictions of hydration kinetics—i.e., time-resolved exothermic heat release profiles—of [PC + SCM] binders. The advanced pBNG model integrates artificial intelligence as an add-on, enabling it to accurately simulate hydration kinetics for …


Boosting Snr Of Cascaded Fbgs In A Sapphire Fiber Through A Rapid Heat Treatment, Farhan Mumtaz, Hanok Tekle, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang Nov 2023

Boosting Snr Of Cascaded Fbgs In A Sapphire Fiber Through A Rapid Heat Treatment, Farhan Mumtaz, Hanok Tekle, Bohong Zhang, Jeffrey D. Smith, Ronald J. O'Malley, Rex E. Gerald, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This Letter reports the performance of femtosecond (fs) laser-written distributed fiber Bragg gratings (FBGs) under high-temperature conditions up to 1600°C and explores the impact of rapid heat treatment on signal-to-noise ratio (SNR) enhancement. FBGs are essential for reliable optical sensing in extreme temperature environments. Comprehensive tests demonstrate the remarkable performance and resilience of FBGs at temperatures up to 1600°C, confirming their suitability for deployment in such conditions. The study also reveals significant fringe visibility improvements of up to ∼10 dB on a 1-m-long sapphire optical fiber through rapid heat treatment, representing a first-time achievement to the best of our knowledge. …


On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar Oct 2023

On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar

Materials Science and Engineering Faculty Research & Creative Works

Limestone calcined clay cement (LC3) is a sustainable alternative to ordinary Portland cement, capable of reducing the binder's carbon footprint by 40% while satisfying all key performance metrics. The inherent compositional heterogeneity in select components of LC3, combined with their convoluted chemical interactions, poses challenges to conventional analytical models when predicting mechanical properties. Although some studies have employed machine learning (ML) to predict the mechanical properties of LC3, many have overlooked the pivotal role of feature selection. Proper feature selection not only refines and simplifies the structure of ML models but also enhances these models' prediction performance and interpretability. This …


Large-Scale Cascading Of First-Order Fbg Array In A Highly Multimode Coreless Fiber Using Femtosecond Laser For Distributed Thermal Sensing, Farhan Mumtaz, Bohong Zhang, Ronald J. O'Malley, Jie Huang Aug 2023

Large-Scale Cascading Of First-Order Fbg Array In A Highly Multimode Coreless Fiber Using Femtosecond Laser For Distributed Thermal Sensing, Farhan Mumtaz, Bohong Zhang, Ronald J. O'Malley, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This research focuses on the performance analysis and characterization of a fiber Bragg gratings (FBGs) array, consisting of 10 first order FBGs inscribed by a femtosecond (FS) laser in a highly multimode coreless fiber. The study evaluates the FBG array's ability to function as a distributed thermal sensing (DTS) platform, with the coreless fiber chosen as the sensing element due to its immunity to dopant migration at high temperatures. The design of a large cascaded first-order FBG array effectively eliminates unwanted harmonic peaks across a wide spectrum range. In contrast, higher-order FBGs introduce limitations due to the overlapping of Bragg …


Temperature Monitoring In The Refractory Lining Of A Continuous Casting Tundish Using Distributed Optical Fiber Sensors, Muhammad Roman, Hanok Tekle, Dinesh Reddy Alla, Farhan Mumtaz, Jeffrey D. Smith, Laura Bartlett, Ronald J. O'Malley, Rex E. Gerald, Jie Huang Jan 2023

Temperature Monitoring In The Refractory Lining Of A Continuous Casting Tundish Using Distributed Optical Fiber Sensors, Muhammad Roman, Hanok Tekle, Dinesh Reddy Alla, Farhan Mumtaz, Jeffrey D. Smith, Laura Bartlett, Ronald J. O'Malley, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

This Article Explores the Prospects of using Spatially Distributed Optical Fiber Temperature Sensors based on Rayleigh Optical Frequency Domain Reflectometry (OFDR) Technology in the Continuous Casting of Molten Steel. the Measurement Capability of the Optical Fiber Sensors in a Simulated Steelmaking Environment Was Demonstrated using a Mock Refractory-Lined Tundish, Which Was Fabricated In-House. Single-Mode Optical Fibers, Contained in Protective Stainless-Steel Tubing, Were Embedded in the Refractory Lining of the Mock Tundish. the Instrumented Tundish Was Preheated Up to a Temperature of 960 °C (Recorded at the Surface of the Working Lining) Before the Molten Steel Pour. a Low-Alloy Steel (AISI …


A Study On The Impact Of Silicon And Manganese On Peritectic Behavior In Low Alloy Steels Assisted By Mold Thermal Mapping Technology And Shell Growth Measurements, Damilola Balogun, Muhammad Roman, Rex E. Gerald, Laura Bartlett, Jie Huang, Ronald O'Malley Jan 2023

A Study On The Impact Of Silicon And Manganese On Peritectic Behavior In Low Alloy Steels Assisted By Mold Thermal Mapping Technology And Shell Growth Measurements, Damilola Balogun, Muhammad Roman, Rex E. Gerald, Laura Bartlett, Jie Huang, Ronald O'Malley

Materials Science and Engineering Faculty Research & Creative Works

Non-Uniform Shell Growth Commonly Caused by the Peritectic Transformation in Low Carbon and Low Alloy Steels Has Been Directly Correlated with Mold Thermal Maps using a Mold Immersion Test into a Molten Steel Alloy. Mold Thermal Maps Were Obtained by Performing Real-Time Temperature Measurements with Optical Fibers Embedded 1 Mm from the Mold Working Surface. Shell Growth Measurements Were Obtained by 3D Optical Scanning of the Recovered Steel Shell Following Immersion Testing. the Effects of Silicon and Manganese on the Shell Growth and Mold Temperature Maps Have Been Examined in Relation to the Peritectic Transformation for Varying Carbon Contents. Results …


Cascaded Sapphire Fiber Bragg Gratings Inscribed By Femtosecond Laser For Molten Steel Studies, Dinesh Reddy Alla, Deva Prasad Neelakandan, Farhan Mumtaz, Rex E. Gerald, Laura Bartlett, Ronald J. O'Malley, Jeffrey D. Smith, Jie Huang Jan 2023

Cascaded Sapphire Fiber Bragg Gratings Inscribed By Femtosecond Laser For Molten Steel Studies, Dinesh Reddy Alla, Deva Prasad Neelakandan, Farhan Mumtaz, Rex E. Gerald, Laura Bartlett, Ronald J. O'Malley, Jeffrey D. Smith, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This research reports a distributed fiber optic high-temperature sensing system tailored for applications in the steel industry and various other sectors. Recent advancements in optical sensor technology have led to the exploration of sapphire crystal fibers as a solution for sensing in harsh environments. Utilizing a femtosecond (fs) laser, cascaded fiber Bragg gratings (FBGs) were meticulously fabricated within a multimode sapphire optical fiber. These FBGs endowed the system with distributed sensing capabilities and underwent rigorous testing under extreme temperatures, reaching up to 1,800 °C. The study delves into the investigation of the FBG reflection spectrum, facilitated by the development of …


Predicting Dissolution Kinetics Of Tricalcium Silicate Using Deep Learning And Analytical Models, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar Jan 2023

Predicting Dissolution Kinetics Of Tricalcium Silicate Using Deep Learning And Analytical Models, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

The dissolution kinetics of Portland cement is a critical factor in controlling the hydration reaction and improving the performance of concrete. Tricalcium silicate (C3S), the primary phase in Portland cement, is known to have complex dissolution mechanisms that involve multiple reactions and changes to particle surfaces. As a result, current analytical models are unable to accurately predict the dissolution kinetics of C3S in various solvents when it is undersaturated with respect to the solvent. This paper employs the deep forest (DF) model to predict the dissolution rate of C3S in the undersaturated solvent. The …


Predicting Compressive Strength And Hydration Products Of Calcium Aluminate Cement Using Data-Driven Approach, Sai Akshay Ponduru, Taihao Han, Jie Huang, Aditya Kumar Jan 2023

Predicting Compressive Strength And Hydration Products Of Calcium Aluminate Cement Using Data-Driven Approach, Sai Akshay Ponduru, Taihao Han, Jie Huang, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Calcium aluminate cement (CAC) has been explored as a sustainable alternative to Portland cement, the most widely used type of cement. However, the hydration reaction and mechanical properties of CAC can be influenced by various factors such as water content, Li2CO3 content, and age. Due to the complex interactions between the precursors in CAC, traditional analytical models have struggled to predict CAC binders' compressive strength and porosity accurately. To overcome this limitation, this study utilizes machine learning (ML) to predict the properties of CAC. The study begins by using thermodynamic simulations to determine the phase assemblages of …


Real-Time Air Gap And Thickness Measurement Of Continuous Caster Mold Flux By Extrinsic Fabry-Perot Interferometer, Abhishek Prakash Hungund, Hanok Tekle, Bohong Zhang, Ronald J. O'Malley, Jeffrey D. Smith, Rex E. Gerald, Jie Huang Jan 2023

Real-Time Air Gap And Thickness Measurement Of Continuous Caster Mold Flux By Extrinsic Fabry-Perot Interferometer, Abhishek Prakash Hungund, Hanok Tekle, Bohong Zhang, Ronald J. O'Malley, Jeffrey D. Smith, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

Mold Flux plays a critical role in continuous casting of steel. Along with many other functions, the mold flux in the gap between the solidifying steel shell and the mold serves as a medium for controlling heat transfer and as a barrier to prevent shell sticking to the mold. This manuscript introduces a novel method of monitoring the structural features of a mold flux film in real-time in a simulated mold gap. A 3-part stainless-steel mold was designed with a 2 mm, 4 mm and, 6 mm step profile to contain mold flux films of varying thickness. An Extrinsic Fabry-Perot …


In Situ And Real-Time Mold Flux Analysis Using A High-Temperature Fiber-Optic Raman Sensor For Steel Manufacturing Applications, Bohong Zhang, Hanok Tekle, Ronald J. O'Malley, Todd Sander, Jeffrey D. Smith, Rex E. Gerald, Jie Huang Jan 2023

In Situ And Real-Time Mold Flux Analysis Using A High-Temperature Fiber-Optic Raman Sensor For Steel Manufacturing Applications, Bohong Zhang, Hanok Tekle, Ronald J. O'Malley, Todd Sander, Jeffrey D. Smith, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

Continuous Casting in Steel Production Uses Specially Developed Oxyfluoride Glasses (Mold Fluxes) to Lubricate a Mold and Control the Solidification of the Steel in the Mold. the Composition of the Flux Impacts Properties, Including Basicity, Viscosity, and Crystallization Rate, All of Which Affect the Stability of the Casting Process and the Quality of the Solidified Steel. However, Mold Fluxes Interact with Steel during the Casting Process, Resulting in Flux Chemistry Changes that Must Be Considered in the Flux Design. Currently, the Chemical Composition of Mold Flux Must Be Determined by Extracting Flux Samples from the Mold during Casting and Then …


In Situ High-Temperature Raman Spectroscopy Via A Remote Fiber-Optic Raman Probe, Bohong Zhang, Hanok Tekle, Ronald J. O'Malley, Jeffrey D. Smith, Rex E. Gerald, Jie Huang Jan 2023

In Situ High-Temperature Raman Spectroscopy Via A Remote Fiber-Optic Raman Probe, Bohong Zhang, Hanok Tekle, Ronald J. O'Malley, Jeffrey D. Smith, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

This Study Demonstrated for the First Time an in Situ High-Temperature Fiber-Optic Raman Probe to Study the Structure of Glass and Slag Samples at Temperatures Up to 1400 °C. a Customized External Telescope Was Integrated into a Portable Fiber-Optic Raman Probe to Extend the Optical Working Distance to Allow the Probe to Work in a High-Temperature Environment. Three Samples Were Evaluated to Demonstrate the Functionality of the High-Temperature Fiber-Optic Raman Probe. Room Temperature and High-Temperature Raman Spectra Were Successfully Collected and Analyzed. in Addition, a Deconvolution Algorithm Was Used to Identify Peaks in the Spectrum that Could Then Be Related …


Advancing Aluminum Casting Optimization With Real-Time Temperature And Gap Measurements Using Optical Fiber Sensors At The Metal-Mold Interface, Bohong Zhang, Abhishek Prakash Hungund, Dinesh Reddy Alla, Deva Prasaad Neelakandan, Muhammad Roman, Ronald J. O'Malley, Laura Bartlett, Rex E. Gerald, Jie Huang Jan 2023

Advancing Aluminum Casting Optimization With Real-Time Temperature And Gap Measurements Using Optical Fiber Sensors At The Metal-Mold Interface, Bohong Zhang, Abhishek Prakash Hungund, Dinesh Reddy Alla, Deva Prasaad Neelakandan, Muhammad Roman, Ronald J. O'Malley, Laura Bartlett, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

Accurate measurement of interfacial heat transfer during casting solidification is crucial for optimizing metal solidification processes. The gap between the mold wall and the casting surface plays a significant role in heat transfer and cooling rates. In this study, two innovative fiber-optic sensors are employed to measure real-time mold gaps and thermal profiles during the solidification of A356 aluminum in a permanent mold casting. The experimental setup consists of a specially designed mold system made of unheated, uncoated tool steel, which facilitates easy installation of the fiber-optic sensors. An Extrinsic Fabry-Perot interferometric (EFPI) sensor is utilized to monitor the evolving …


A Fiber-Optic Sensor-Embedded And Machine Learning Assisted Smart Helmet For Multi-Variable Blunt Force Impact Sensing In Real Time, Yiyang Zhuang, Taihao Han, Qingbo Yang, Ryan O'Malley, Aditya Kumar, Rex E. Gerald, Jie Huang Dec 2022

A Fiber-Optic Sensor-Embedded And Machine Learning Assisted Smart Helmet For Multi-Variable Blunt Force Impact Sensing In Real Time, Yiyang Zhuang, Taihao Han, Qingbo Yang, Ryan O'Malley, Aditya Kumar, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

Early on-site diagnosis of mild traumatic brain injury (mTBI) will provide the best guidance for clinical practice. However, existing methods and sensors cannot provide sufficiently detailed physical information related to the blunt force impact. In the present work, a smart helmet with a single embedded fiber Bragg grating (FBG) sensor is developed, which can monitor complex blunt force impact events in real time under both wired and wireless modes. The transient oscillatory signal "fingerprint" can specifically reflect the impact-caused physical deformation of the local helmet structure. By combination with machine learning algorithms, the unknown transient impact can be recognized quickly …


Predicting Compressive Strength Of Alkali-Activated Systems Based On The Network Topology And Phase Assemblages Using Tree-Structure Computing Algorithms, Rohan Bhat, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar Jun 2022

Predicting Compressive Strength Of Alkali-Activated Systems Based On The Network Topology And Phase Assemblages Using Tree-Structure Computing Algorithms, Rohan Bhat, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Alkali-activated system is an environment-friendly, sustainable construction material utilized to replace ordinary Portland cement (OPC) that contributes to 9% of the global carbon footprint. Moreover, the alkali-activated system has exhibited superior strength at early ages and better corrosion resistance compared to OPC. The current state of analytical and machine learning models cannot produce highly reliable predictions of the compressive strength of alkali-activated systems made from different types of aluminosilicate-rich precursors owing to substantive variation in the chemical compositions and reactivity of these precursors. In this study, a random forest model with two constraints (i.e., topological network and thermodynamic constraints) is …


Machine Learning Enabled Closed-Form Models To Predict Strength Of Alkali-Activated Systems, Taihao Han, Eslam Gomaa, Ahmed Gheni, Jie Huang, Mohamed Elgawady, Aditya Kumar Jun 2022

Machine Learning Enabled Closed-Form Models To Predict Strength Of Alkali-Activated Systems, Taihao Han, Eslam Gomaa, Ahmed Gheni, Jie Huang, Mohamed Elgawady, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Alkali-activated mortar (AAM) is an emerging eco-friendly construction material, which can complement ordinary Portland cement (OPC) mortars. Prediction of properties of AAMs—albeit much needed to complement experiments—is difficult, owing to substantive batch-to-batch variations in physicochemical properties of their precursors (i.e., aluminosilicate and activator solution). In this study, a machine learning (ML) model is employed; and it is shown that the model—once trained and optimized—can reliably predict compressive strength of AAMs solely from their initial physicochemical attributes. Prediction performance of the model improves when multiple compositional descriptors of the aluminosilicate are combined into a singular, composite chemostructural descriptor (i.e., network ratio …


Polarization-Sensitive Optical Responses From Natural Layered Hydrated Sodium Sulfosalt Gerstleyite, Ravi P. N. Tripathi, Xiaodong Yang, Jie Gao Mar 2022

Polarization-Sensitive Optical Responses From Natural Layered Hydrated Sodium Sulfosalt Gerstleyite, Ravi P. N. Tripathi, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Multi-element layered materials have gained substantial attention in the context of achieving the customized light-matter interactions at subwavelength scale via stoichiometric engineering, which is crucial for the realization of miniaturized polarization-sensitive optoelectronic and nanophotonic devices. Herein, naturally occurring hydrated sodium sulfosalt gerstleyite is introduced as one new multi-element van der Waals (vdW) layered material. The mechanically exfoliated thin gerstleyite flakes are demonstrated to exhibit polarization-sensitive anisotropic linear and nonlinear optical responses including angle-resolved Raman scattering, anomalous wavelength-dependent linear dichroism transition, birefringence effect, and polarization-dependent third-harmonic generation (THG). Furthermore, the third-order nonlinear susceptibility of gerstleyite crystal is estimated by the probed …


A Deep Learning Approach To Design And Discover Sustainable Cementitious Binders: Strategies To Learn From Small Databases And Develop Closed-Form Analytical Models, Taihao Han, Sai Akshay Ponduru, Rachel Cook, Jie Huang, Gaurav Sant, Aditya Kumar Jan 2022

A Deep Learning Approach To Design And Discover Sustainable Cementitious Binders: Strategies To Learn From Small Databases And Develop Closed-Form Analytical Models, Taihao Han, Sai Akshay Ponduru, Rachel Cook, Jie Huang, Gaurav Sant, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

To reduce the energy-intensity and carbon footprint of Portland cement (PC), the prevailing practice embraced by concrete technologists is to partially replace the PC in concrete with supplementary cementitious materials [SCMs: geological materials (e.g., limestone); industrial by-products (e.g., fly ash); and processed materials (e.g., calcined clay)]. Chemistry and content of the SCM profoundly affect PC hydration kinetics; which, in turn, dictates the evolutions of microstructure and properties of the [PC + SCM] binder. Owing to the substantial diversity in SCMs' compositions–plus the massive combinatorial spaces, and the highly nonlinear and mutually-interacting processes that arise from SCM-PC interactions–state-of-the-art computational models are …


A Deep Learning Approach To Design And Discover Sustainable Cementitious Binders: Strategies To Learn From Small Databases And Develop Closed-Form Analytical Models, Taihao Han, Sai Akshay Ponduru, Rachel Cook, Jie Huang, Gaurav Sant, Aditya Kumar Jan 2022

A Deep Learning Approach To Design And Discover Sustainable Cementitious Binders: Strategies To Learn From Small Databases And Develop Closed-Form Analytical Models, Taihao Han, Sai Akshay Ponduru, Rachel Cook, Jie Huang, Gaurav Sant, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

To reduce the energy-intensity and carbon footprint of Portland cement (PC), the prevailing practice embraced by concrete technologists is to partially replace the PC in concrete with supplementary cementitious materials [SCMs: geological materials (e.g., limestone); industrial by-products (e.g., fly ash); and processed materials (e.g., calcined clay)]. Chemistry and content of the SCM profoundly affect PC hydration kinetics; which, in turn, dictates the evolutions of microstructure and properties of the [PC + SCM] binder. Owing to the substantial diversity in SCMs' compositions-plus the massive combinatorial spaces, and the highly nonlinear and mutually-interacting processes that arise from SCM-PC interactions-state-of-the-art computational models are …


Machine Learning For High-Fidelity Prediction Of Cement Hydration Kinetics In Blended Systems, Rachel Cook, Taihao Han, Alaina Childers, Cambria Ryckman, Kamal Khayat, Hongyan Ma, Jie Huang, Aditya Kumar Oct 2021

Machine Learning For High-Fidelity Prediction Of Cement Hydration Kinetics In Blended Systems, Rachel Cook, Taihao Han, Alaina Childers, Cambria Ryckman, Kamal Khayat, Hongyan Ma, Jie Huang, Aditya Kumar

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The production of ordinary Portland cement (OPC), the most broadly utilized man-made material, has been scrutinized due to its contributions to global anthropogenic CO2 emissions. Thus -- to mitigate CO2 emissions -- mineral additives have been promulgated as partial replacements for OPC. However, additives -- depending on their physiochemical characteristics -- can exert varying effects on OPC's hydration kinetics. Therefore -- in regards to more complex systems -- it is infeasible for semi-empirical kinetic models to reveal the underlying nonlinear composition-property (i.e., reactivity) relationships. In the past decade or so, machine learning (ML) has arisen as a promising, …


Fiber Optic Sensor Embedded Smart Helmet For Real-Time Impact Sensing And Analysis Through Machine Learning, Yiyang Zhuang, Qingbo Yang, Taihao Han, Ryan O'Malley, Aditya Kumar, Rex E. Gerald Ii, Jie Huang Mar 2021

Fiber Optic Sensor Embedded Smart Helmet For Real-Time Impact Sensing And Analysis Through Machine Learning, Yiyang Zhuang, Qingbo Yang, Taihao Han, Ryan O'Malley, Aditya Kumar, Rex E. Gerald Ii, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

Background: Mild traumatic brain injury (mTBI) strongly associates with chronic neurodegenerative impairments such as post-traumatic stress disorder (PTSD) and mild cognitive impairment. Early detection of concussive events would significantly enhance the understanding of head injuries and provide better guidance for urgent diagnoses and the best clinical practices for achieving full recovery. New method: A smart helmet was developed with a single embedded fiber Bragg grating (FBG) sensor for real-time sensing of blunt-force impact events to helmets. The transient signals provide both magnitude and directional information about the impact event, and the data can be used for training machine learning (ML) …


Peritectic Behavior Detection In The Fe-C-Mn-Al-Si Steel System Using Fiber Optic Temperature Mapping, Muhammad Roman, Damilola Balogun, Rex E. Gerald Ii, Laura Bartlett, Jie Huang, Ronald J. O'Malley Sep 2020

Peritectic Behavior Detection In The Fe-C-Mn-Al-Si Steel System Using Fiber Optic Temperature Mapping, Muhammad Roman, Damilola Balogun, Rex E. Gerald Ii, Laura Bartlett, Jie Huang, Ronald J. O'Malley

Materials Science and Engineering Faculty Research & Creative Works

Peritectic reactions can cause surface defects and breakouts in continuous casting and the peritectic region is often avoided by adjusting the chemical composition of the steel to cast outside of the peritectic sensitivity range. However, the combined effects of C, Mn, Al, and Si on the boundaries that map peritectic region are still disputed for many advanced high strength steel grades. An apparatus for performing controlled solidification experiments is being developed to characterize the effects of chemical composition on the uniformity of shell growth during solidification using a copper chill mold with an embedded fiber-optic temperature sensor that enables high …


Inorganic Biodegradable Substrates For Devices And Systems, Chang-Soo Kim, Richard K. Brow, D. E. Day Dec 2017

Inorganic Biodegradable Substrates For Devices And Systems, Chang-Soo Kim, Richard K. Brow, D. E. Day

Electrical and Computer Engineering Faculty Research & Creative Works

Disclosed are biodegradable glass substrates that are useful as functional elements of solid-state devices. In particular, biodegradable glass substrates having a rapidly degradable glass and a slowly degradable glass provide a structural platform that completely dissolves following a desired operational lifetime of devices such as implanted electronic devices, implanted sensor devices, and optical fibers.


Water-Soluble Glass Substrate As A Platform For Biodegradable Solid-State Devices, Shihab Md Adnan, Kwangman Lee, Mohammad Tayeb Ahmad Ghasr, Matthew O'Keefe, D. E. Day, Chang-Soo Kim Nov 2016

Water-Soluble Glass Substrate As A Platform For Biodegradable Solid-State Devices, Shihab Md Adnan, Kwangman Lee, Mohammad Tayeb Ahmad Ghasr, Matthew O'Keefe, D. E. Day, Chang-Soo Kim

Materials Science and Engineering Faculty Research & Creative Works

A biodegradable glass material is utilized as a novel functional element of solid-state devices. A water-soluble borate glass substrate serves as the structural platform on which thin film device is built. The glass substrate completely dissolves in a saline solution in approximately 40 h. Intentional failure of the spiral device (RLC resonator circuit) as a result of rapid structural disintegration by dissolution is demonstrated in DC, AC, and RF ranges that agrees well with simulation. Adopting water-soluble glass elements is expected to be a viable approach to develop reliable all-inorganic biodegradable devices that are fully functional during an intended operational …


Biodegradable Electronic And Optical Devices Toward Temporary Implants, Md Shihab Adnan Jan 2016

Biodegradable Electronic And Optical Devices Toward Temporary Implants, Md Shihab Adnan

Masters Theses

"Implantable biomedical devices have a high potential to revolutionize health care technologies in near future. Implantable devices can be classified as permanent prosthetic devices such as pacemakers or nerve stimulants and temporary devices for intermediate monitoring and control scenario which are still in research phase. In contrast to permanent device, temporary implants lose functionality and become unnecessary after intended operational lifetime which may pose serious electromagnetic and biomedical safety concern, latent complications at the implanted sites and possible ethical issues if not removed from body by an additional surgical operation.

The first paper of this thesis focuses on exploring the …


Microwave Material Characterization Of Alkali-Silica Reaction (Asr) Gel In Cementitious Materials, Ashkan Hashemi Jan 2016

Microwave Material Characterization Of Alkali-Silica Reaction (Asr) Gel In Cementitious Materials, Ashkan Hashemi

Doctoral Dissertations

"Since alkali-silica reaction (ASR) was recognized as a durability challenge in cement-based materials over 70 years ago, numerous methods have been utilized to prevent, detect, and mitigate this issue. However, quantifying the amount of produced ASR byproducts (i.e., ASR gel) in-service is still of great interest in the infrastructure industry. The overarching objective of this dissertation is to bring a new understanding to the fundamentals of ASR formation from a microwave dielectric property characterization point-of-view, and more importantly, to investigate the potential for devising a microwave nondestructive testing approach for ASR gel detection and evaluation. To this end, a comprehensive …