Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses and Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 1 - 23 of 23

Full-Text Articles in Robotics

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad Dec 2023

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad

Theses and Dissertations

Running computer vision algorithms requires complex devices with lots of computing power, these types of devices are not well suited for space deployment. The harsh radiation environment and limited power budgets have hindered the ability of running advanced computer vision algorithms in space. This problem makes running an on-orbit servicing detection algorithm very difficult. This work proposes using a low powered FPGA to accelerate the computer vision algorithms that enable satellite component feature extraction. This work uses AMD/Xilinx’s Zynq SoC and DPU IP to run model inference. Experiments in this work centered around improving model post processing by creating implementations …


Improving The Flexibility And Robustness Of Machine Tending Mobile Robots, Richard Ethan Hollingsworth Jan 2023

Improving The Flexibility And Robustness Of Machine Tending Mobile Robots, Richard Ethan Hollingsworth

Theses and Dissertations

While traditional manufacturing production cells consist of a fixed base robot repetitively performing tasks, the Industry 5.0 flexible manufacturing cell (FMC) aims to bring Autonomous Industrial Mobile Manipulators (AIMMs) to the factory floor. Composed of a wheeled base and a robot arm, these collaborative robots (cobots) operate alongside people while autonomously performing tasks at different workstations. AIMMs have been tested in real production systems, but the development of the control algorithms necessary for automating a robot that is a combination of two cobots remains an open challenge before the large scale adoption of this technology occurs in industry. Currently popular …


Portable Robotic Navigation Aid For The Visually Impaired, Lingqiu Jin Jan 2023

Portable Robotic Navigation Aid For The Visually Impaired, Lingqiu Jin

Theses and Dissertations

This dissertation aims to address the limitations of existing visual-inertial (VI) SLAM methods - lack of needed robustness and accuracy - for assistive navigation in a large indoor space. Several improvements are made to existing SLAM technology, and the improved methods are used to enable two robotic assistive devices, a robot cane, and a robotic object manipulation aid, for the visually impaired for assistive wayfinding and object detection/grasping. First, depth measurements are incorporated into the optimization process for device pose estimation to improve the success rate of VI SLAM's initialization and reduce scale drift. The improved method, called depth-enhanced visual-inertial …


Initiating Change In Care: Socially Assistive Robots, Sooraj Sushama Jan 2023

Initiating Change In Care: Socially Assistive Robots, Sooraj Sushama

Theses and Dissertations

Socially assistive robots (SAR) are autonomous machines equipped with sensors and software that allow them to interact socially with humans. SAR robots are commonly used in healthcare settings to provide patients with non-clinical support, such as conversation and emotional companionship. SARs can also deliver reminders, monitor vital signs, and provide educational information about health conditions or medications. Researchers have studied SAR applications in detail. Additionally, there has been prior research on SAR where users' sociodemographic factors and technology acceptance were studied. But even though the backbone of SAR is an advanced technology, no known research has been done on users' …


Assessment Of Simulated And Real-World Autonomy Performance With Small-Scale Unmanned Ground Vehicles, William Peyton Johnson Dec 2022

Assessment Of Simulated And Real-World Autonomy Performance With Small-Scale Unmanned Ground Vehicles, William Peyton Johnson

Theses and Dissertations

Off-road autonomy is a challenging topic that requires robust systems to both understand and navigate complex environments. While on-road autonomy has seen a major expansion in recent years in the consumer space, off-road systems are mostly relegated to niche applications. However, these applications can provide safety and navigation to dangerous areas that are the most suited for autonomy tasks. Traversability analysis is at the core of many of the algorithms employed in these topics. In this thesis, a Clearpath Robotics Jackal vehicle is equipped with a 3D Ouster laser scanner to define and traverse off-road environments. The Mississippi State University …


The Effects Of Ecological Simulation For Ground Vehicle Mobility Forecasting, Christopher R. Hudson May 2022

The Effects Of Ecological Simulation For Ground Vehicle Mobility Forecasting, Christopher R. Hudson

Theses and Dissertations

Unmanned ground vehicles (UGV) are being explored for use in military domains. Military UGVs operate in complex off-road environments. Vehicle mobility forecasting plays an important role in understanding how and where a vehicle can operate. Traditional mobility forecasting has been done using an analytical model known as the NATO Reference Mobility Model (NRMM). There has been a push to extend the forecasting capabilities of NRMM by integrating more simulation methods. Simulation enables the repeated testing of UGVs in scenarios that would be difficult or dangerous to study in real world testing. To accurately capture UGV performance in simulation, the operating …


Automotive Sensor Fusion Systems For Traffic Aware Adaptive Cruise Control, Jonah T. Gandy May 2022

Automotive Sensor Fusion Systems For Traffic Aware Adaptive Cruise Control, Jonah T. Gandy

Theses and Dissertations

The autonomous driving (AD) industry is advancing at a rapid pace. New sensing technology for tracking vehicles, controlling vehicle behavior, and communicating with infrastructure are being added to commercial vehicles. These new automotive technologies reduce on road fatalities, improve ride quality, and improve vehicle fuel economy. This research explores two types of automotive sensor fusion systems: a novel radar/camera sensor fusion system using a long shortterm memory (LSTM) neural network (NN) to perform data fusion improving tracking capabilities in a simulated environment and a traditional radar/camera sensor fusion system that is deployed in Mississippi State’s entry in the EcoCAR Mobility …


Learning Robot Motion From Creative Human Demonstration, Charles C. Dietzel Jan 2022

Learning Robot Motion From Creative Human Demonstration, Charles C. Dietzel

Theses and Dissertations

This thesis presents a learning from demonstration framework that enables a robot to learn and perform creative motions from human demonstrations in real-time. In order to satisfy all of the functional requirements for the framework, the developed technique is comprised of two modular components, which integrate together to provide the desired functionality. The first component, called Dancing from Demonstration (DfD), is a kinesthetic learning from demonstration technique. This technique is capable of playing back newly learned motions in real-time, as well as combining multiple learned motions together in a configurable way, either to reduce trajectory error or to generate entirely …


3d Shape Estimation Of Negative Obstacles Using Lidar Point Cloud Data, Viswadeep Lebakula Dec 2021

3d Shape Estimation Of Negative Obstacles Using Lidar Point Cloud Data, Viswadeep Lebakula

Theses and Dissertations

Obstacle detection and avoidance plays a crucial role in the autonomous navigation of unmanned ground vehicles (UGV). Information about the obstacles decreases as the distance between the UGV and obstacles increases. However, this information decreases much more rapidly for negative obstacles than for positive obstacles. UGV navigation becomes more challenging in off-road environments due to the higher probability of finding negative obstacles (e.g., potholes, ditches, trenches, etc.) compared with on-road environments. One approach to solve this problem is to avoid the candidate path with a negative obstacle, but in off-road environments avoiding negative obstacles in all situations is not possible. …


Design Of Plastic Contaminant Eliminator In Seed Cotton, Joshua H. Tandio Dec 2021

Design Of Plastic Contaminant Eliminator In Seed Cotton, Joshua H. Tandio

Theses and Dissertations

Plastic contamination in cotton is a problem in cotton industry and researchers have worked on this problem with different approaches. This thesis documents the design of mechanical and electronic real-time systems for detecting and removing plastic contaminants. The mechanical system was designed to expose plastic embedded inside the seed cotton to the sensor and to separate plastic contaminated cotton from the process stream. The detection system consisted of an embedded computer interfaced with a USB camera and Neural Network (NN) software running in it. Two NN models were tested, a transfer learning model and a built-from-scratch original model. The original …


Deep Learning Assisted Intelligent Visual And Vehicle Tracking Systems, Liang Xu Jan 2021

Deep Learning Assisted Intelligent Visual And Vehicle Tracking Systems, Liang Xu

Theses and Dissertations

Sensor fusion and tracking is the ability to bring together measurements from multiple sensors of the current and past time to estimate the current state of a system. The resulting state estimate is more accurate compared with the direct sensor measurement because it balances between the state prediction based on the assumed motion model and the noisy sensor measurement. Systems can then use the information provided by the sensor fusion and tracking process to support more-intelligent actions and achieve autonomy in a system like an autonomous vehicle. In the past, widely used sensor data are structured, which can be directly …


Efficient End-To-End Autonomous Driving, Hesham Eraqi Dec 2020

Efficient End-To-End Autonomous Driving, Hesham Eraqi

Theses and Dissertations

Steering a car through traffic is a complex task that is difficult to cast into algorithms. Therefore, researchers turn to train artificial neural networks from front-facing camera data stream along with the associated steering angles. Nevertheless, most existing solutions consider only the visual camera frames as input, thus ignoring the temporal relationship between frames. In this work, we propose a Convolution Long Short-Term Memory Recurrent Neural Network (C-LSTM), which is end-to-end trainable, to learn both visual and dynamic temporal dependencies of driving. Additionally, We introduce posing the steering angle regression problem as classification while imposing a spatial relationship between the …


Development Of Iot Based Hybrid Autonomous Network Robots (Anr), Chimsom Isidore Chukwuemeka Jan 2020

Development Of Iot Based Hybrid Autonomous Network Robots (Anr), Chimsom Isidore Chukwuemeka

Theses and Dissertations

The integration of wireless sensor networks (WSNs) and multirobot systems (MRS) represents an active research area supporting a wide range of applications. This is because it enables ubiquitous applications due to the robots' mobility and detection capabilities associated with its deployment. These systems have many benefits, such as perception with extended coverage that facilitate wider exploration and surveillance, efficiency in data routing, effective and reliable task environment management, etc. However, integrating two fields of research means dealing with a range of challenges such as using effective architecture for WSNs and MRS, efficient communication protocols within a network of sensors nodes …


A Hierarchical Architectural Framework For Securing Unmanned Aerial Systems, Matthew Leccadito Jan 2017

A Hierarchical Architectural Framework For Securing Unmanned Aerial Systems, Matthew Leccadito

Theses and Dissertations

Unmanned Aerial Systems (UAS) are becoming more widely used in the new era of evolving technology; increasing performance while decreasing size, weight, and cost. A UAS equipped with a Flight Control System (FCS) that can be used to fly semi- or fully-autonomous is a prime example of a Cyber Physical and Safety Critical system. Current Cyber-Physical defenses against malicious attacks are structured around security standards for best practices involving the development of protocols and the digital software implementation. Thus far, few attempts have been made to embed security into the architecture of the system considering security as a holistic problem. …


Omni-Directional Infrared 3d Reconstruction And Tracking Of Human Targets, Emrah Benli Jan 2017

Omni-Directional Infrared 3d Reconstruction And Tracking Of Human Targets, Emrah Benli

Theses and Dissertations

Omni-directional (O-D) infrared (IR) vision is an effective capability for mobile systems in robotics, due to its advantages: illumination invariance, wide field-of-view, ease of identifying heat-emitting objects, and long term tracking without interruption. Unfortunately, O-D IR sensors have low resolution, low frame rates, high cost, sensor noise, and an increase in tracking time. In order to overcome these disadvantages, we propose an autonomous system application in indoor scenarios including 1) Dynamic 3D Reconstruction (D3DR) of the target view in real time images, 2) Human Behavior-based Target Tracking from O-D thermal images, 3) Thermal Multisensor Fusion (TMF), and 4) Visual Perception …


Characterization Of A Robotic Manipulator For Dynamic Wind Tunnel Applications, James C. Lancaster Mar 2015

Characterization Of A Robotic Manipulator For Dynamic Wind Tunnel Applications, James C. Lancaster

Theses and Dissertations

The newly acquired 6-DOF Motion Test Apparatus (MTA) was installed to perform dynamic wind tunnel testing in the AFIT Low Speed Wind Tunnel. Several complex motions revealed that the overall performance of the test rig needed improvement especially during small motions. The motions exposed that further enhancements would need to be performed individually for each joint. This research effort focused on the improvement of the MTA wrist roll motor and controller using a pitch oscillation. The controller software was improved using position feedback because the MTA wrist roll motor and controller exhibited reduced signal bias and amplitude attenuation. The enhanced …


Intelligent Behavioral Action Aiding For Improved Autonomous Image Navigation, Kwee Guan Eng Sep 2012

Intelligent Behavioral Action Aiding For Improved Autonomous Image Navigation, Kwee Guan Eng

Theses and Dissertations

In egomotion image navigation, errors are common especially when traversing areas with few landmarks. Since image navigation is often used as a passive navigation technique in Global Positioning System (GPS) denied environments; egomotion accuracy is important for precise navigation in these challenging environments. One of the causes of egomotion errors is inaccurate landmark distance measurements, e.g., sensor noise. This research determines a landmark location egomotion error model that quantifies the effects of landmark locations on egomotion value uncertainty and errors. The error model accounts for increases in landmark uncertainty due to landmark distance and image centrality. A robot then uses …


Kernelized Locality-Sensitive Hashing For Fast Image Landmark Association, Mark A. Weems Mar 2011

Kernelized Locality-Sensitive Hashing For Fast Image Landmark Association, Mark A. Weems

Theses and Dissertations

As the concept of war has evolved, navigation in urban environments where GPS may be degraded is increasingly becoming more important. Two existing solutions are vision-aided navigation and vision-based Simultaneous Localization and Mapping (SLAM). The problem, however, is that vision-based navigation techniques can require excessive amounts of memory and increased computational complexity resulting in a decrease in speed. This research focuses on techniques to improve such issues by speeding up and optimizing the data association process in vision-based SLAM. Specifically, this work studies the current methods that algorithms use to associate a current robot pose to that of one previously …


Developing An Effective And Efficient Real Time Strategy Agent For Use As A Computer Generated Force, Kurt Weissgerber Mar 2010

Developing An Effective And Efficient Real Time Strategy Agent For Use As A Computer Generated Force, Kurt Weissgerber

Theses and Dissertations

Computer Generated Forces (CGF) are used to represent units or individuals in military training and constructive simulation. The use of CGF significantly reduces the time and money required for effective training. For CGF to be effective, they must behave as a human would in the same environment. Real Time Strategy (RTS) games place players in control of a large force whose goal is to defeat the opponent. The military setting of RTS games makes them an excellent platform for the development and testing of CGF. While there has been significant research in RTS agent development, most of the developed agents …


Electronic Image Stabilization For Mobile Robotic Vision Systems, Michael John Smith Sep 2009

Electronic Image Stabilization For Mobile Robotic Vision Systems, Michael John Smith

Theses and Dissertations

When a camera is affixed on a dynamic mobile robot, image stabilization is the first step towards more complex analysis on the video feed. This thesis presents a novel electronic image stabilization (EIS) algorithm for small inexpensive highly dynamic mobile robotic platforms with onboard camera systems. The algorithm combines optical flow motion parameter estimation with angular rate data provided by a strapdown inertial measurement unit (IMU). A discrete Kalman filter in feedforward configuration is used for optimal fusion of the two data sources. Performance evaluations are conducted by a simulated video truth model (capturing the effects of image translation, rotation, …


Unified Behavior Framework In An Embedded Robot Controller, Stephen S. Lin Mar 2009

Unified Behavior Framework In An Embedded Robot Controller, Stephen S. Lin

Theses and Dissertations

Robots of varying autonomy have been used to take the place of humans in dangerous tasks. While robots are considered more expendable than human beings, they are complex to develop and expensive to replace if lost. Recent technological advances produce small, inexpensive hardware platforms that are powerful enough to match robots from just a few years ago. There are many types of autonomous control architecture that can be used to control these hardware platforms. One in particular, the Unified Behavior Framework, is a flexible, responsive control architecture that is designed to simplify the control system’s design process through behavior module …


Power-Scavenging Mems Robots, Daniel J. Denninghoff Mar 2006

Power-Scavenging Mems Robots, Daniel J. Denninghoff

Theses and Dissertations

This thesis includes the design, modeling, and testing of novel, power-scavenging, biologically inspired MEMS microrobots. Over one hundred 500-μm and 990-μm microrobots with two, four, and eight wings were designed, fabricated, characterized. These microrobots constitute the smallest documented attempt at powered flight. Each microrobot wing is comprised of downward-deflecting, laser-powered thermal actuators made of gold and polysilicon; the microrobots were fabricated in PolyMUMPs® (Polysilicon Multi-User MEMS Processes). Characterization results of the microrobots illustrate how wing-tip deflection can be maximized by optimizing the gold-topolysilicon ratio as well as the dimensions of the actuator-wings. From these results, an optimum actuator-wing configuration was …


Self-Assembly Of Microstructures, Paul E. Kladitis Dec 1997

Self-Assembly Of Microstructures, Paul E. Kladitis

Theses and Dissertations

Four areas are investigated in this research: erecting microstructures normal to the substrate plane without direct human intervention (self-assembled), providing low resistance electrical connections to the erected microstructure, realizing circular motion normal to the substrate plane, and implementing a micro-robot. The designs in this research concentrate on erecting and providing power to a leg designed for use with the micro-robot. The leg and the attached low resistance electrical connectors were not self-assembled because the accompanying actuators were not powerful enough. However, the novel connectors provide the most practical, versatile, and lowest possible resistance connections for the MUMPs fabrication process. The …