Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electro-Mechanical Systems

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 46

Full-Text Articles in Robotics

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon Aug 2023

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon

Electronic Thesis and Dissertation Repository

Musculoskeletal disorders are the biggest cause of disability worldwide, and wearable mechatronic rehabilitation devices have been proposed for treatment. However, before widespread adoption, improvements in user control and system adaptability are required. User intention should be detected intuitively, and user-induced changes in system dynamics should be unobtrusively identified and corrected. Developments often focus on model-dependent nonlinear control theory, which is challenging to implement for wearable devices.

One alternative is to incorporate bioelectrical signal-based machine learning into the system, allowing for simpler controller designs to be augmented by supplemental brain (electroencephalography/EEG) and muscle (electromyography/EMG) information. To extract user intention better, sensor …


Development Of A Soft Robotic Approach For An Intra-Abdominal Wireless Laparoscopic Camera, Hui Liu Aug 2023

Development Of A Soft Robotic Approach For An Intra-Abdominal Wireless Laparoscopic Camera, Hui Liu

Doctoral Dissertations

In Single-Incision Laparoscopic Surgery (SILS), the Magnetic Anchoring and Guidance System (MAGS) arises as a promising technique to provide larger workspaces and field of vision for the laparoscopes, relief space for other instruments, and require fewer incisions. Inspired by MAGS, many concept designs related to fully insertable magnetically driven laparoscopes are developed and tested on the transabdominal operation. However, ignoring the tissue interaction and insertion procedure, most of the designs adopt rigid structures, which not only damage the patients' tissue with excess stress concentration and sliding motion but also require complicated operation for the insertion. Meanwhile, lacking state tracking of …


In-Situ Mechanical Tester, Andrrew Murach, Gustavo Marquez, Kosimo Tonn, Jake Vormbaum Jun 2023

In-Situ Mechanical Tester, Andrrew Murach, Gustavo Marquez, Kosimo Tonn, Jake Vormbaum

Mechanical Engineering

Over the course of the 2022-23 Cal Poly SLO school year, a small tensile tester device was developed specifically for Dr. Long Wang to test thin film materials under a microscope and generate accurate force versus displacement graphs. A tensile tester was manufactured using purchased and machined components, electronics were consolidated in a separate box and connected, and a program and user interface were written to control the motion, provide custom inputs, and organize useful data for the researcher. Tests were conducted to compare the performance of the device to universal tensile testers available in the Composites lab. The device …


Assistive Robotic Platform For Non‐Urgent Household Tasks: A New Design, Amanda Serger, Normandy Tanguilan, Hakki Erhan Sevil May 2023

Assistive Robotic Platform For Non‐Urgent Household Tasks: A New Design, Amanda Serger, Normandy Tanguilan, Hakki Erhan Sevil

36th Florida Conference on Recent Advances in Robotics

Humans overcome minor household inconveniences daily without fully recognizing how challenging these tasks could be for individuals such as elderly people or people with disabilities. Those people often times struggle to complete tasks, for instance opening a door or reaching for an item, leading them to rely on caregivers for help. During the COVID-19 pandemic, this caregiver support becomes an unsafe and unreliable solution that can result in a greater risk, thus the need for another solution arises: robotic technology. Recent developments in the robotics field have paved the way for this research, aiming to design a home assistance robot …


Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang May 2023

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang

Electronic Theses and Dissertations

Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large …


Implementation Of Static Rfid Landmarks In Slam For Planogram Compliance, Brennan L. Drake Apr 2023

Implementation Of Static Rfid Landmarks In Slam For Planogram Compliance, Brennan L. Drake

Honors College Theses

Autonomous robotic systems are becoming increasingly prevalent in everyday life and exhibit robust solutions in a wide range of applications. They face many obstacles with the foremost of which being SLAM, or Simultaneous Localization and Mapping, that encompasses both creation of the map of an unknown environment and localization of the robot in said environment. In this experiment, researchers propose the use of RFID tags in a semi-dynamic commercial environment to provide concrete landmarks for localization and mapping in pursuit of increased locational certainty. With this obtained, the ultimate goal of the research is to construct a robotics platform for …


Therapeutic Mechanical Horse, Cade M. Liberty, Aleya Dolorfino, Peter Philips, Zuzanna Dominik, Luke Watts Jun 2022

Therapeutic Mechanical Horse, Cade M. Liberty, Aleya Dolorfino, Peter Philips, Zuzanna Dominik, Luke Watts

Mechanical Engineering

Jack's Helping Hand and its hippotherapy participants required a device to serve as an alternative to a live horseback riding experience that could also increase the range of riders. This would provide more clients with equine-assisted therapy that has proven to better the lives of people with both physical and mental disabilities. Horses can be unpredictable, tall, and sometimes anxiety-inducing, especially for new riders. Our group’s aim was to develop a mechanical horse that will be able to reduce these issues for equine therapy centers and the riders they help. When a rider gets to practice sitting on the horse …


Cloudbots: Autonomous Atmospheric Explorers, Akash Binoj May 2022

Cloudbots: Autonomous Atmospheric Explorers, Akash Binoj

Honors Scholar Theses

The CloudBot is an autonomous weather balloon that operates on the principle of variable buoyancy to ascend and descend in the atmosphere. This project aims to develop a device that will collect atmospheric measurements and communicate them mid-flight. The apparatus consists of a helium-filled balloon, the robotic payload, and an air cell. The fixed-volume helium balloon at the top provides an upwards buoyancy force, while the air cell at the bottom can hold a variable amount of pressure to adjust the weight of the CloudBot. By doing so, it is able to travel in storm conditions and collect valuable atmospheric …


Automated Robotic Light Bulb Testing Platform, Agha I. Akram, Muhammad Ali Ummy May 2022

Automated Robotic Light Bulb Testing Platform, Agha I. Akram, Muhammad Ali Ummy

Publications and Research

The main purpose of this project is to create a functional prototype of a multilayered system that incorporates aspects of electrical, mechanical, and computer engineering technology. The main objective of the system is to be able to determine whether a light bulb is working or not. The building blocks of this system are a robotic arm that is able to slide along a rail (for added mobility), a conveyor belt, and an electromechanical device that holds and tests light bulbs. Initially, the robot arm picks up a light bulb and places it into the holder which then tests it. A …


Autonomous Navigator Mobile Robot Upgrade, David Sansoucy Apr 2022

Autonomous Navigator Mobile Robot Upgrade, David Sansoucy

Thinking Matters Symposium

The mobile robot platform has been developed over the course of 10 years at USM. In Spring 2020, Belle-Isle and Werner updated the previous framework by rewriting the software to use the ROS framework running on an on-board Raspberry Pi 3. They also implemented navigation using an A* motion planning algorithm and image processing. In Summer 2021, Ames incorporated Lidar and Kinect sensors onto the robot to improve its real-time navigation capabilities. He also made improvements to the power distribution systems. This project aimed to build on the ROS frameworks developed by the previous 2 teams with the main goal …


Development Of A Compliant Gripper Driven By 3 Dof Soft Robot, Derek M. Price Ii, Ricardo Ramirez, Pt Angel Tran Apr 2022

Development Of A Compliant Gripper Driven By 3 Dof Soft Robot, Derek M. Price Ii, Ricardo Ramirez, Pt Angel Tran

Symposium of Student Scholars

Industrial robots are moving toward automation, which makes it increasingly necessary to replace the functions traditionally performed by humans with robotics. Pick and place operation is a prime example of such automation. Robots that pick up and place objects mimic the human action of picking an object up and placing it in a targeted location. It has led to the development of robotic end-effectors that have a human-like feel. Grippers can be articulated in various ways depending on their application area and well-defined desired tasks. As compliant and soft links deflect more under the same load than their rigid body …


Design And Control Of Quasi-Direct Drive Actuation For Lightweight And Versatile Wearable Robots, Shuangyue Yu Jan 2022

Design And Control Of Quasi-Direct Drive Actuation For Lightweight And Versatile Wearable Robots, Shuangyue Yu

Dissertations and Theses

Wearable robots have shown great potential for augmenting the physical capabilities of humans in lab settings. However, wearable robots for augmenting the physical capabilities of humans under community-based conditions are the new frontier of robotics. Furthermore, the design and control are still considered to be grand challenges for providing physical augmentation for humans. In terms of design, the state-of-the-art exoskeletons are typically rigid, bulky, and limited to lab settings. In terms of control, most of the rhythmic controllers are not versatile and are focused only on steady-state walking assistance.

The motivation behind my research is to improve both the design …


Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone May 2021

Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone

Electronic Thesis and Dissertation Repository

Haptics can enable a direct communication pipeline between the artificial limb and the brain; adding haptic sensory feedback for prosthesis wearers is believed to improve operation without drawing too much of the user's attention. Through neuroplasticity, the brain can become more cognizant of the information delivered through the skin and may eventually interpret it as inherently as other natural senses. In this thesis, a wearable haptic feedback device (WHFD) is developed to communicate prosthesis sensory information. A 14-week, 6-stage, between subjects study was created to investigate the learning trajectory as participants were stimulated with haptic patterns conveying joint proprioception. 37 …


Automated Bottling Station - Packaging System, Lauren Nicole Zinzilieta May 2021

Automated Bottling Station - Packaging System, Lauren Nicole Zinzilieta

Honors College Theses

This report focuses on the packaging system used at the end of the FESTO bottling station that is located in EP 2355. The system will be made up of an x-y 300 mm x 300 mm gantry system, an Arduino, two micro-stepping stepper drivers, and two 152.4 mm (6 in) single acting cylinders with a 3D printed bracket attached to both. The gantry system will be located at the end of the conveyor belt and will be programmed to pick up three bottles at a time and then will move a specified number of steps in both the x and …


Surface Autonomous Vehicle For Emergency Rescue, Max Emerick, Ryan Shields, Christopher Feickert, Raymond Impara Jun 2020

Surface Autonomous Vehicle For Emergency Rescue, Max Emerick, Ryan Shields, Christopher Feickert, Raymond Impara

Mechanical Engineering

The goal of this document is to clearly define the problem parameters and project objectives and to clearly describe the design process, planned final design, and manufacturing and testing procedures for the senior design project of Team 26: SAVER -- the Surface Autonomous Vehicle for Emergency Rescue. This is both for the purpose of project planning and for clear communication between all parties involved in the project.

The objective of the SAVER project is to develop a proof of concept for an autonomous maritime search and rescue vehicle for aiding in man-overboard missions. To accomplish this goal, a list of …


Dual-Axis Solar Tracker, Bryan Kennedy Jan 2020

Dual-Axis Solar Tracker, Bryan Kennedy

All Undergraduate Projects

Renewable energies, and fuels that are not fossil fuel-based, are one of the prolific topics of debate in modern society. With climate change now becoming a primary focus for scientists and innovators of today, one of the areas for the largest amount of potential and growth is that of the capturing and utilization of Solar Energy. This method involves using a mechanical system to track the progression of the sun as it traverses the sky throughout the day. A dual-axis solar tracker such as the one designed and built for this project, can follow the sun both azimuthally and in …


A Low-Cost Experimental Testbed For Multi-Agent System Coordination Control, Victor Fernandez-Kim Jun 2019

A Low-Cost Experimental Testbed For Multi-Agent System Coordination Control, Victor Fernandez-Kim

LSU Master's Theses

A multi-agent system can be defined as a coordinated network of mobile, physical agents that execute complex tasks beyond their individual capabilities. Observations of biological multi-agent systems in nature reveal that these ``super-organisms” accomplish large scale tasks by leveraging the inherent advantages of a coordinated group. With this in mind, such systems have the potential to positively impact a wide variety of engineering applications (e.g. surveillance, self-driving cars, and mobile sensor networks). The current state of research in the area of multi-agent systems is quickly evolving from the theoretical development of coordination control algorithms and their computer simulations to experimental …


Comparison Of Lqr And Lqr-Mrac For Linear Tractor-Trailer Model, Kevin Richard Gasik May 2019

Comparison Of Lqr And Lqr-Mrac For Linear Tractor-Trailer Model, Kevin Richard Gasik

Master's Theses

The United States trucking industry is immense. Employing over three million drivers and traveling to every city in the country. Semi-Trucks travel millions of miles each week and encompass roads that civilians travel on. These vehicles should be safe and allow efficient travel for all. Autonomous vehicles have been discussed in controls for many decades. Now fleets of autonomous vehicles are beginning their integration into society. The ability to create an autonomous system requires domain and system specific knowledge. Approaches to implement a fully autonomous vehicle have been developed using different techniques in control systems such as Kalman Filters, Neural …


Hydrogen Fuel Cell Gasket Handling And Sorting With Machine Vision Integrated Dual Arm Robot, Devin C. Fowler Jan 2019

Hydrogen Fuel Cell Gasket Handling And Sorting With Machine Vision Integrated Dual Arm Robot, Devin C. Fowler

Electronic Theses and Dissertations

Recently demonstrated robotic assembling technologies for fuel cell stacks used fuel cell components manually pre-arranged in stacks (presenters), all oriented in the same position. Identifying the original orientation of fuel cell components and loading them in stacks for a subsequent automated assembly process is a difficult, repetitive work cycle which if done manually, deceives the advantages offered by automated fabrication technologies of fuel cell components and by robotic assembly processes. We present an innovative robotic technology which enables the integration of automated fabrication processes of fuel cell components with robotic assembly of fuel cell stacks into a fully automated fuel …


Micro-Manipulation Using Learned Model, Matthew A. Lyng, Benjamin V. Johnson, David J. Cappelleri Aug 2018

Micro-Manipulation Using Learned Model, Matthew A. Lyng, Benjamin V. Johnson, David J. Cappelleri

The Summer Undergraduate Research Fellowship (SURF) Symposium

Microscale devices can be found in applications ranging from sensors to structural components. The dominance of surface forces at the microscale hinders the assembly processes through nonlinear interactions that are difficult to model for automation, limiting designs of microsystems to primarily monolithic structures. Methods for modeling surface forces must be presented for viable manufacturing of devices consisting of multiple microparts. This paper proposes the implementation of supervised machine learning models to aid in automated micromanipulation tasks for advanced manufacturing applications. The developed models use sets of training data to implicitly model surface interactions and predict end-effector placement and paths that …


Development Of A Fully Instrumented, Resonant Tensegrity Strut, Kentaro Barhydt Jun 2018

Development Of A Fully Instrumented, Resonant Tensegrity Strut, Kentaro Barhydt

Honors Theses

A tensegrity is a structure composed of a series of rigid members connected in static equilibrium by tensile elements. A vibrating tensegrity robot is an underactuated system in which a set of its struts are vibrated at certain frequency combinations to achieve various locomotive gaits. Evolutionary robotics research lead by Professor John Rieffel focuses on exploiting the complex dynamics of tensegrity structures to control locomotion in vibrating tensegrity robots by finding desired gaits using genetic algorithms. A current hypothesis of interest is that the optimal locomotive gaits of a vibrating tensegrity exist at its resonant frequencies.

In order to observe …


Dynamic In Vivo Skeletal Feature Tracking Via Fluoroscopy Using A Human Gait Model, William Patrick Anderson Dec 2017

Dynamic In Vivo Skeletal Feature Tracking Via Fluoroscopy Using A Human Gait Model, William Patrick Anderson

Doctoral Dissertations

The Tracking Fluoroscope System II, a mobile robotic fluoroscopy platform, developed and built at the University of Tennessee, Knoxville, presently employs a pattern matching algorithm in order to identify and track a marker placed upon a subject’s knee joint of interest. The purpose of this research is to generate a new tracking algorithm based around the human gait cycle for prediction and improving the overall accuracy of joint tracking.

This research centers around processing the acquired x-ray images of the desired knee joint obtained during standard clinical operation in order to identify and track directly through the acquired image. Due …


Answering Food Insecurity: Serving The Community With Food And Knowledge Using Technology, Courtney Simpson Oct 2017

Answering Food Insecurity: Serving The Community With Food And Knowledge Using Technology, Courtney Simpson

Purdue Journal of Service-Learning and International Engagement

The courses of Tech120, CGT110, and ENGT 180/181 and Red Gold at Purdue collaborated to design a robot that would plant and water a garden for a local community charter school. The students centered the project on the users’ needs for fresh food, nutrition education, and early exposure to STEM for children. The school, Anderson Preparatory Academy (APA), is comprised of many children who come from low-income families and are in the free or reduced lunch program. Inspired from “Farm Bot,” a similar system that allows for almost hands-free gardening, the “Boiler Bot” is designed to be scalable so children …


Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken Jul 2017

Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken

Doctoral Dissertations

Robots are increasingly expected to work in partially observable and unstructured environments. They need to select actions that exploit perceptual and motor resourcefulness to manage uncertainty based on the demands of the task and environment. The research in this dissertation makes two primary contributions. First, it develops a new concept in resourceful robot platforms called the UMass uBot and introduces the sixth and seventh in the uBot series. uBot-6 introduces multiple postural configurations that enable different modes of mobility and manipulation to meet the needs of a wide variety of tasks and environmental constraints. uBot-7 extends this with the use …


Blend It Wine Blending Distribution System, Connor Clarry, Russell Temple, Matt Moren Jun 2017

Blend It Wine Blending Distribution System, Connor Clarry, Russell Temple, Matt Moren

Mechanical Engineering

No abstract provided.


Remote Cable Gantry, Allen L. Bailey Jun 2017

Remote Cable Gantry, Allen L. Bailey

Electrical Engineering

The Remote Cable Gantry is a robotic system that was initially intended to aid in the art of aerial videography. It was designed to enable novice and expert users alike to capture both video footage and audio from perspectives unachievable by current methods. This system uses a series of cables to control the position of a camera gimbal in a defined 3D space and, as a self-contained unit, is portable and easy to use. The Remote Cable Gantry offers a quiet, intuitive, and safe alternative to existing technology, which has been limiting the market and potential of aerial photography and …


Autonomous Quadrotor Collision Avoidance And Destination Seeking In A Gps-Denied Environment, Thomas C. Kirven Jan 2017

Autonomous Quadrotor Collision Avoidance And Destination Seeking In A Gps-Denied Environment, Thomas C. Kirven

Theses and Dissertations--Mechanical Engineering

This thesis presents a real-time autonomous guidance and control method for a quadrotor in a GPS-denied environment. The quadrotor autonomously seeks a destination while it avoids obstacles whose shape and position are initially unknown. We implement the obstacle avoidance and destination seeking methods using off-the-shelf sensors, including a vision-sensing camera. The vision-sensing camera detects the positions of points on the surface of obstacles. We use this obstacle position data and a potential-field method to generate velocity commands. We present a backstepping controller that uses the velocity commands to generate the quadrotor's control inputs. In indoor experiments, we demonstrate that the …


Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar Nov 2016

Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar

Doctoral Dissertations

As assistive, wearable robotic devices are being developed to physically assist their users, it has become crucial to develop safe, reliable methods to coordinate the device with the intentions and motions of the wearer. This dissertation investigates the recognition of user intent during flexion and extension of the human torso in the sagittal plane to be used for control of an assistive exoskeleton for the human torso. A multi-sensor intent recognition approach is developed that combines information from surface electromyogram (sEMG) signals from the user’s muscles and inertial sensors mounted on the user’s body. Intent recognition is implemented by following …


A Haptic Surface Robot Interface For Large-Format Touchscreen Displays, Mark Price Jul 2016

A Haptic Surface Robot Interface For Large-Format Touchscreen Displays, Mark Price

Masters Theses

This thesis presents the design for a novel haptic interface for large-format touchscreens. Techniques such as electrovibration, ultrasonic vibration, and external braked devices have been developed by other researchers to deliver haptic feedback to touchscreen users. However, these methods do not address the need for spatial constraints that only restrict user motion in the direction of the constraint. This technology gap contributes to the lack of haptic technology available for touchscreen-based upper-limb rehabilitation, despite the prevalent use of haptics in other forms of robotic rehabilitation. The goal of this thesis is to display kinesthetic haptic constraints to the touchscreen user …


Development Of An Autonomous Robotic Mushroom Harvester, Nikita Alexeevich Kuchinskiy Feb 2016

Development Of An Autonomous Robotic Mushroom Harvester, Nikita Alexeevich Kuchinskiy

Electronic Thesis and Dissertation Repository

The process of development of a new robot is one of the modern technological arts. This process involves multiple complex steps and recursive approach. In this project, a solution for automatic harvesting of mushrooms is developed. In order to design an effective solution, it is necessary to explore and take into consideration the limitations of grasping very soft and fragile objects (particularly mushrooms). We will elaborate several strategies of picking and analyze each strategy to formulate the design requirements, develop a solution, and finally, evaluate the efficiency of the proposed solution in actual farm conditions for real mushrooms. The mushroom …