Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 91 - 107 of 107

Full-Text Articles in Robotics

Robust Region Tracking In Multi-Agent Systems Utilizing Sliding Mode Control: Theory And Applications, Mark Bacon Jan 2011

Robust Region Tracking In Multi-Agent Systems Utilizing Sliding Mode Control: Theory And Applications, Mark Bacon

Master's Theses

This thesis presents a methodology to bring controlled agents within a moving region despite agent interaction dynamics, uncertain forces and parameter variation. The logic is derived from traditional Sliding Mode Control theory with an expanded boundary layer which allows position deviation from the region center to specified bounds. As an example of the utility of this control, multiple methods of herding (controlling passive agents by appropriate positioning of controlled agents) are presented.


Adaptive Discrete-Time Controller Design With Neural Network For Hypersonic Flight Vehicle Via Back-Stepping, Bin Xu Jan 2011

Adaptive Discrete-Time Controller Design With Neural Network For Hypersonic Flight Vehicle Via Back-Stepping, Bin Xu

Bin Xu

In this article, the adaptive neural controller in discrete time is investigated for the longitudinal dynamics of a generic hypersonic flight vehicle. The dynamics are decomposed into the altitude subsystem and the velocity subsystem. The altitude subsystem is transformed into the strict-feedback form from which the discrete-time model is derived by the first-order Taylor expansion. The virtual control is designed with nominal feedback and neural network (NN) approximation via back-stepping. Meanwhile, one adaptive NN controller is designed for the velocity subsystem. To avoid the circular construction problem in the practical control, the design of coefficients adopts the upper bound instead …


Adaptive Neural Control Based On Hgo For Hypersonic Flight Vehicles, Bin Xu Jan 2011

Adaptive Neural Control Based On Hgo For Hypersonic Flight Vehicles, Bin Xu

Bin Xu

This paper describes the design of adaptive neural controller for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV) which are decomposed into two functional systems, namely the altitude subsystem and the velocity subsystem. For each subsystem, one adaptive neural controller is investigated based on the normal output-feedback formulation. For the altitude subsystem, the high gain observer (HGO) is taken to estimate the unknown newly defined states. Only one neural network (NN) is employed to approximate the lumped uncertain system nonlinearity during the controller design which is considerably simpler than the ones based on back-stepping scheme with the strict-feedback …


Task Allocation For Multi-Spacecraft Cooperation Based On Estimation Of Distribution Algorithm, Bin Xu Jan 2011

Task Allocation For Multi-Spacecraft Cooperation Based On Estimation Of Distribution Algorithm, Bin Xu

Bin Xu

One two-stage task allocation strategy is proposed for multi-spacecraft cooperation during the long-range orbit transfer with two impulses. This paper focuses on the task value maximum and cost minimum optimization by assigning spacecraft to different task. At the first stage time and energy cost are considered based on the spacecraft dynamics. The optimization result is together with the target value as the factor for the task allocation model at the second stage. The optimization is processed separately in continuous and discrete time domain with estimation of distribution algorithm (EDA). Different task allocation mode is formulated and the strategy is verified …


Composite Control Based On Optimal Torque Control And Adaptive Kriging Control For The Crab Rover, Bin Xu Jan 2011

Composite Control Based On Optimal Torque Control And Adaptive Kriging Control For The Crab Rover, Bin Xu

Bin Xu

Terrainability is mostly dependant on the suspension mechanism and the control of a space rover. For the six wheeled CRAB rover, this paper presents the composite control design with torque control and adaptive Kriging control to improve the terrainability, somewhat related to minimizing heel slip. As CRAB is moving slowly, the torque control is processed by minimizing the variance of the required friction coefficient based on the static model. Adaptive Kriging control is used to track the commanded velocity. The system uncertainty is compensated by Kriging estimation based on the velocity dynamics. Experiment results with two different tires show the …


Adaptive Hypersonic Flight Control Via Back-Stepping And Kriging Estimation, Bin Xu Jan 2011

Adaptive Hypersonic Flight Control Via Back-Stepping And Kriging Estimation, Bin Xu

Bin Xu

This paper investigates the adaptive Kriging controller for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV). For the altitude subsystem, the dynamics are transformed into the strict-feedback form where the backstepping scheme is employed. Considering the nonlinearity of the dynamics, the nominal feedback is included in the controller while Kriging system is designed to estimate the uncertainty. With the proposed controller, the almost surely bounded stability is guaranteed. The simulation study is presented to show the effectiveness of the proposed control approach.


Multiple Robot Boundary Tracking With Phase And Workload Balancing, Michael Jay Boardman Jun 2010

Multiple Robot Boundary Tracking With Phase And Workload Balancing, Michael Jay Boardman

Master's Theses

This thesis discusses the use of a cooperative multiple robot system as applied to distributed tracking and sampling of a boundary edge. Within this system the boundary edge is partitioned into subsegments, each allocated to a particular robot such that workload is balanced across the robots. Also, to minimize the time between sampling local areas of the boundary edge, it is desirable to minimize the difference between each robot’s progression (i.e. phase) along its allocated sub segment of the edge. The paper introduces a new distributed controller that handles both workload and phase balancing. Simulation results are used to illustrate …


Adaptive Pid Control Based On Rbf Network Approximating The Satellite Clock Thermal Model, Bin Xu Jan 2010

Adaptive Pid Control Based On Rbf Network Approximating The Satellite Clock Thermal Model, Bin Xu

Bin Xu

The accuracy o f t ime information prov ided by sate llite clock g reat ly depends on its frequency stab ili􀀁 ty, w hich is up to the stability o f the co re tempera ture. Th is paper introduces an adaptive PID control for the sate llite c lock system whose mode l is approx imated based on RBF neural netw orks. Simu lation resu lts demonstrate the va lid ity o f the proposed contro.l


Unified Behavior Framework In An Embedded Robot Controller, Stephen S. Lin Mar 2009

Unified Behavior Framework In An Embedded Robot Controller, Stephen S. Lin

Theses and Dissertations

Robots of varying autonomy have been used to take the place of humans in dangerous tasks. While robots are considered more expendable than human beings, they are complex to develop and expensive to replace if lost. Recent technological advances produce small, inexpensive hardware platforms that are powerful enough to match robots from just a few years ago. There are many types of autonomous control architecture that can be used to control these hardware platforms. One in particular, the Unified Behavior Framework, is a flexible, responsive control architecture that is designed to simplify the control system’s design process through behavior module …


An Improved Robust Projection Identification Algorithm To Manned Maneuvering Units, Bin Xu Jan 2008

An Improved Robust Projection Identification Algorithm To Manned Maneuvering Units, Bin Xu

Bin Xu

空间载人机动装置(MMU )在进行救援过程中, 其动力学参数存在很大的不确定性。为解决这一辨识问题, 本文首先推导系统关于各动力学参数的线性化模型, 然后结合该线性模型的特点, 提出了一种用于估计动力学参数的改进鲁棒投影算法, 并在理论上分析了该算法的收敛性质, 数字仿真验证了方法的有效性。


A Fuzzy Logic Controller For Autonomous Wheeled Vehicles, Mohamed Trabia, Linda Z. Shi, Neil Eugene Hodge Dec 2006

A Fuzzy Logic Controller For Autonomous Wheeled Vehicles, Mohamed Trabia, Linda Z. Shi, Neil Eugene Hodge

Mechanical Engineering Faculty Research

Autonomous vehicles have potential applications in many fields, such as replacing humans in hazardous environments, conducting military missions, and performing routine tasks for industry. Driving ground vehicles is an area where human performance has proven to be reliable. Drivers typically respond quickly to sudden changes in their environment. While other control techniques may be used to control a vehicle, fuzzy logic has certain advantages in this area; one of them is its ability to incorporate human knowledge and experience, via language, into relationships among the given quantities. Fuzzy logic controllers for autonomous vehicles have been successfully applied to address various …


Design And Evaluation Of Processes For Fuel Fabrication: Quarterly Progress Report #11, Georg F. Mauer May 2004

Design And Evaluation Of Processes For Fuel Fabrication: Quarterly Progress Report #11, Georg F. Mauer

Fuels Campaign (TRP)

The eleventh quarter of the project covered the following:

• Mr. Richard Silva successfully defended his thesis in April 2004 and graduated from the MEG Master’s program.

• Further refinements on Concepts and Methods for Vision-Based Hot Cell Supervision and control, focusing on rule-based object recognition (Ph.D. Graduate Jae-Kyu Lee). Ms. Caroline Wiejak, an exchange student from the ESIEE in Marne-la-Vallee, France is continuing with the image analysis effort. To date, she has transferred Jae-Kyu’s code to Matlab, and is presently expanding its application to more complex 3D shapes.

• Graduate student Jamil Renno refined and detailed his simulations of …


Design And Evaluation Of Processes For Fuel Fabrication: Quarterly Progress Report #10, Georg F. Mauer Feb 2004

Design And Evaluation Of Processes For Fuel Fabrication: Quarterly Progress Report #10, Georg F. Mauer

Fuels Campaign (TRP)

The tenth quarter of the project covered the following:

• Mr. Richard Silva continued the development of a simulation model with a Waelischmiller hot cell robot, and is close to completing his M.Sc. thesis project. Rich will likely defend his thesis in April 2004.

• A project review meeting with Dr. Mitch Meyer and other ANL scientists was held in December 2003 at ANL West, Idaho Falls, ID. Dr. Meyer described ANL long term research objectives with regard to transmuter fuel manufacturing.

• Further refinements on Concepts and Methods for Vision-Based Hot Cell Supervision and control, focusing on rule-based object …


Design And Evaluation Of Processes For Fuel Fabrication: Quarterly Progress Report #7, Georg F. Mauer May 2003

Design And Evaluation Of Processes For Fuel Fabrication: Quarterly Progress Report #7, Georg F. Mauer

Fuels Campaign (TRP)

The seventh quarter of the project covered the following:

• Mr. Richard Silva continued the development of a simulation model with a Waelischmiller hot cell robot. Rich will continue to develop detailed 3-D process simulation models as his M.Sc. thesis project.

• Mr. Richard Silva presented a paper on hot cell robotics at the ANS student conference in Berkeley, CA.

• Concepts and Methods for Vision-Based Hot Cell Supervision and control, focusing on rule-based object recognition (Ph.D. Student Jae-Kyu Lee)

• Undergraduate student Jamil Renno, developed better control algorithms, and created simulations of pick and place actions for the hot …


Design And Evaluation Of Processes For Fuel Fabrication: Quarterly Progress Report #6, Georg F. Mauer Feb 2003

Design And Evaluation Of Processes For Fuel Fabrication: Quarterly Progress Report #6, Georg F. Mauer

Fuels Campaign (TRP)

The sixth quarter of the project covered the following:

• Mr. Richard Silva continued the development of a simulation model with a Waelischmiller hot cell robot. Rich will continue to develop detailed 3-D process simulation models as his M.Sc. thesis project. Rich is employed with Bechtel at the Yucca Mountain project.

• Concepts and Methods for Vision-Based Hot Cell Supervision and control (Ph.D. Student Jae-Kyu Lee )

• An undergraduate senior student in mechanical engineering, Mr. Jamil Renno, was hired to develop the simulation model for the hot cell manipulator.


Comparison Of Two Distributed Fuzzy Logic Controllers For Flexible-Link Manipulators, Linda Z. Shi, Mohamed Trabia May 2001

Comparison Of Two Distributed Fuzzy Logic Controllers For Flexible-Link Manipulators, Linda Z. Shi, Mohamed Trabia

Mechanical Engineering Faculty Presentations

The paper suggests that fuzzy logic controllers present a computationally efficient and robust alternative to conventional controllers. The paper presents two possible structures for the distributed fuzzy logic controller of a single-link flexible manipulator. A linear quadratic regulator method is used to prove the effectiveness of fuzzy logic controllers.


Variable Structure End Point Control Of A Flexible Manipulator, Shailaja Chenumalla, Sahjendra N. Singh Jul 1993

Variable Structure End Point Control Of A Flexible Manipulator, Shailaja Chenumalla, Sahjendra N. Singh

Electrical & Computer Engineering Faculty Research

We treat the question of control and stabilization of the elastic multibody system developed in the Phillips Laboratory, Edwards Air Force Base, California. The controlled output is judiciously chosen such that the zero dynamics are stable or almost stable. A variable structure control (VSC) law is derived for the end point trajectory control. Although, the VSC law accomplishes precise end point tracking, elastic modes are excited during the maneuver of the arm. A Linear stabilizer is designed for the final capture of the terminal state.