Open Access. Powered by Scholars. Published by Universities.®

Other Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chapman University

Other Mathematics

Kripke polynomial functors

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Other Computer Engineering

Algebraic Semantics For Coalgebraic Logics, Clemens Kupke, Alexander Kurz, Dirk Pattinson Jan 2004

Algebraic Semantics For Coalgebraic Logics, Clemens Kupke, Alexander Kurz, Dirk Pattinson

Engineering Faculty Articles and Research

With coalgebras usually being defined in terms of an endofunctor T on sets, this paper shows that modal logics for T-coalgebras can be naturally described as functors L on boolean algebras. Building on this idea, we study soundness, completeness and expressiveness of coalgebraic logics from the perspective of duality theory. That is, given a logic L for coalgebras of an endofunctor T, we construct an endofunctor L such that L-algebras provide a sound and complete (algebraic) semantics of the logic. We show that if L is dual to T, then soundness and completeness of the algebraic semantics immediately yield the ...


Stone Coalgebras, Clemens Kupke, Alexander Kurz, Yde Venema Jan 2003

Stone Coalgebras, Clemens Kupke, Alexander Kurz, Yde Venema

Engineering Faculty Articles and Research

In this paper we argue that the category of Stone spaces forms an interesting base category for coalgebras, in particular, if one considers the Vietoris functor as an analogue to the power set functor. We prove that the so-called descriptive general frames, which play a fundamental role in the semantics of modal logics, can be seen as Stone coalgebras in a natural way. This yields a duality between the category of modal algebras and that of coalgebras over the Vietoris functor. Building on this idea, we introduce the notion of a Vietoris polynomial functor over the category of Stone spaces ...