Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Computer Engineering

A Structured Narrative Prompt For Prompting Narratives From Large Language Models: Sentiment Assessment Of Chatgpt-Generated Narratives And Real Tweets, Christopher J. Lynch, Erik J. Jensen, Virginia Zamponi, Kevin O'Brien, Erika Frydenlund, Ross Gore Jan 2023

A Structured Narrative Prompt For Prompting Narratives From Large Language Models: Sentiment Assessment Of Chatgpt-Generated Narratives And Real Tweets, Christopher J. Lynch, Erik J. Jensen, Virginia Zamponi, Kevin O'Brien, Erika Frydenlund, Ross Gore

VMASC Publications

Large language models (LLMs) excel in providing natural language responses that sound authoritative, reflect knowledge of the context area, and can present from a range of varied perspectives. Agent-based models and simulations consist of simulated agents that interact within a simulated environment to explore societal, social, and ethical, among other, problems. Simulated agents generate large volumes of data and discerning useful and relevant content is an onerous task. LLMs can help in communicating agents' perspectives on key life events by providing natural language narratives. However, these narratives should be factual, transparent, and reproducible. Therefore, we present a structured narrative prompt …


A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela Jul 2022

A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela

Faculty Publications

Robot software developed in simulation often does not be- have as expected when deployed because the simulation does not sufficiently represent reality - this is sometimes called the `reality gap' problem. We propose a novel algorithm to address the reality gap by injecting real-world experience into the simulation. It is assumed that the robot program (control policy) is developed using simulation, but subsequently deployed on a real system, and that the program includes a performance objective monitor procedure with scalar output. The proposed approach collects simulation and real world observations and builds conditional probability functions. These are used to generate …


Power-Over-Tether Unmanned Aerial System Leveraged For Trajectory Influenced Atmospheric Sensing, Daniel Rico Aug 2021

Power-Over-Tether Unmanned Aerial System Leveraged For Trajectory Influenced Atmospheric Sensing, Daniel Rico

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

The use of unmanned aerial systems (UASs) in agriculture has risen in the past decade and is helping to modernize agriculture. UASs collect and elucidate data previously difficult to obtain and are used to help increase agricultural efficiency and production. Typical commercial off-the-shelf (COTS) UASs are limited by small payloads and short flight times. Such limits inhibit their ability to provide abundant data at multiple spatiotemporal scales. In this thesis, we describe the design and construction of the tethered aircraft unmanned system (TAUS), which is a novel power-over-tether UAS configured for long-term, high throughput atmospheric monitoring with an array of …


Evaluating Driving Performance Of A Novel Behavior Planning Model On Connected Autonomous Vehicles, Keyur Shah May 2020

Evaluating Driving Performance Of A Novel Behavior Planning Model On Connected Autonomous Vehicles, Keyur Shah

Honors Scholar Theses

Many current algorithms and approaches in autonomous driving attempt to solve the "trajectory generation" or "trajectory following” problems: given a target behavior (e.g. stay in the current lane at the speed limit or change lane), what trajectory should the vehicle follow, and what inputs should the driving agent apply to the throttle and brake to achieve this trajectory? In this work, we instead focus on the “behavior planning” problem—specifically, should an autonomous vehicle change lane or keep lane given the current state of the system?

In addition, current theory mainly focuses on single-vehicle systems, where vehicles do not communicate with …


The Trolley Problem In Virtual Reality, Jungsu Pak, Ariane Guirguis, Nicholas Mirchandani, Scott Cummings, Uri Maoz Dec 2019

The Trolley Problem In Virtual Reality, Jungsu Pak, Ariane Guirguis, Nicholas Mirchandani, Scott Cummings, Uri Maoz

Student Scholar Symposium Abstracts and Posters

Would people react to the Trolley problem differently based on the medium? Immersive Virtual Reality Driving Simulator was used to examine participants respond to the trolley problem in a realistic and controlled simulated environment.


Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque Dec 2019

Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Landing an unmanned aerial vehicle (UAV) on a moving platform is a challenging task that often requires exact models of the UAV dynamics, platform characteristics, and environmental conditions. In this thesis, we present and investigate three different machine learning approaches with varying levels of domain knowledge: dynamics randomization, universal policy with system identification, and reinforcement learning with no parameter variation. We first train the policies in simulation, then perform experiments both in simulation, making variations of the system dynamics with wind and friction coefficient, then perform experiments in a real robot system with wind variation. We initially expected that providing …


Personal Universes: A Solution To The Multi-Agent Value Alignment Problem, Roman V. Yampolskiy Jan 2019

Personal Universes: A Solution To The Multi-Agent Value Alignment Problem, Roman V. Yampolskiy

Faculty Scholarship

AI Safety researchers attempting to align values of highly capable intelligent systems with those of humanity face a number of challenges including personal value extraction, multi-agent value merger and finally in-silico encoding. State-of-the-art research in value alignment shows difficulties in every stage in this process, but merger of incompatible preferences is a particularly difficult challenge to overcome. In this paper we assume that the value extraction problem will be solved and propose a possible way to implement an AI solution which optimally aligns with individual preferences of each user. We conclude by analyzing benefits and limitations of the proposed approach.


Design And Implementation Of A Stand-Alone Tool For Metabolic Simulations, Milad Ghiasi Rad Dec 2017

Design And Implementation Of A Stand-Alone Tool For Metabolic Simulations, Milad Ghiasi Rad

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

In this thesis, we present the design and implementation of a stand-alone tool for metabolic simulations. This system is able to integrate custom-built SBML models along with external user’s input information and produces the estimation of any reactants participating in the chain of the reactions in the provided model, e.g., ATP, Glucose, Insulin, for the given duration using numerical analysis and simulations. This tool offers the food intake arguments in the calculations to consider the personalized metabolic characteristics in the simulations. The tool has also been generalized to take into consideration of temporal genomic information and be flexible for simulation …


Simulation, Development And Deployment Of Mobile Wireless Sensor Networks For Migratory Bird Tracking, William P. Bennett Jr Aug 2012

Simulation, Development And Deployment Of Mobile Wireless Sensor Networks For Migratory Bird Tracking, William P. Bennett Jr

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

This thesis presents CraneTracker, a multi-modal sensing and communication system for monitoring migratory species at the continental level. By exploiting the robust and extensive cellular infrastructure across the continent, traditional mobile wireless sensor networks can be extended to enable reliable, low-cost monitoring of migratory species. The developed multi-tier architecture yields ecologists with unconventional behavior information not furnished by alternative tracking systems at such a large scale and for a low-cost. The simulation, development and implementation of the CraneTracker software system is presented. The system is shown effective through multiple proxy deployments on wildlife and has been operational for 10 months …


Robust Control Techniques Enabling Duty Cycle Experiments Utilizing A 6-Dof Crewstation Motion Base, A Full Scale Combat Hybrid Electric Power System, And Long Distance Internet Communications, Marc Compere, Jarrett Goodell, Miguel Simon, Wilford Smith, Mark Brudnak Nov 2006

Robust Control Techniques Enabling Duty Cycle Experiments Utilizing A 6-Dof Crewstation Motion Base, A Full Scale Combat Hybrid Electric Power System, And Long Distance Internet Communications, Marc Compere, Jarrett Goodell, Miguel Simon, Wilford Smith, Mark Brudnak

Publications

The RemoteLink effort supports the U.S. Army's objective for developing and fielding next generation hybrid-electric combat vehicles. It is a distributed soldierin- the-Ioop and hardware-in-the-Ioop environment with a 6-DOF motion base for operator realism, a full-scale combat hybrid electric power system, and an operational context provided by OneSAF. The driver/gunner crewstations rest on one of two 6-DOF motion bases at the U.S. Army TARDEC Simulation Laboratory (TSL). The hybrid power system is located 2,450 miles away at the TARDEC Power and Energy System Integration Laboratory (P&E SIL). The primary technical challenge in the RemoteLink is to operate both laboratories together …


Robust Control Techniques For State Tracking In The Presence Of Variable Time Delays, Jarrett Goodell, Marc Compere, Miguel Simon, Wilford Smith, Ronnie Wright, Mark Brudnak Jan 2005

Robust Control Techniques For State Tracking In The Presence Of Variable Time Delays, Jarrett Goodell, Marc Compere, Miguel Simon, Wilford Smith, Ronnie Wright, Mark Brudnak

Publications

In this paper, a distributed driver-in-the-Ioop and hardware-in-the-Ioop simulator is described with a driver on a motion simulator at the U.S. Army TARDEC Ground Vehicle Simulation Laboratory (GVSL). Realistic power system response is achieved by linking the driver in the GVSL with a full-sized hybrid electric power system located 2,450 miles away at the TARDEC Power and Energy Systems Integration Laboratory (P&E SIL), which is developed and maintained by Science Applications International Corporation (SAIC). The goal is to close the loop between the GVSL and P&E SIL over the Internet to provide a realistic driving experience in addition to realistic …


Collecting Data About Logic Simulation, Roger D. Chamberlain, Mark A. Franklin May 1985

Collecting Data About Logic Simulation, Roger D. Chamberlain, Mark A. Franklin

All Computer Science and Engineering Research

Design of high performance hardware and software based gate-switch level logic simulators requires knowledge about the logic simulation process itself. Unfortunately, little data is publically available concerning key aspects of this process. An example of this is the lack of published empirical measurements relating to the time distribution of events generated by such simulators. This paper presents a gate-switch level logic simulator lsim which is oriented towards the collection of data about the simulation process. The basic components of lsim are reviewed, and its relevant data gathering facilities are discussed. An example is presented which illustrates the use of lsim …