Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Series

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 2854

Full-Text Articles in Computer Engineering

Maximizing Multifaceted Network Influence, Yuchen Li, Ju Fan, George V. Ovchinnikov, Panagiotis Karras Nov 2019

Maximizing Multifaceted Network Influence, Yuchen Li, Ju Fan, George V. Ovchinnikov, Panagiotis Karras

Research Collection School Of Information Systems

An information dissemination campaign is often multifaceted, involving several facets or pieces of information disseminating from different sources. The question then arises, how should we assign such pieces to eligible sources so as to achieve the best viral dissemination results? Past research has studied the problem of Influence Maximization (IM), which is to select a set of k promoters that maximizes the expected reach of a message over a network. However, in this classical IM problem, each promoter spreads out the same unitary piece of information. In this paper, we propose the Optimal Influential Pieces Assignment (OIPA) problem, which is ...


Pipelined Parallelism In A Work-Stealing Scheduler, Thomas Kelly Sep 2019

Pipelined Parallelism In A Work-Stealing Scheduler, Thomas Kelly

All Computer Science and Engineering Research

A pipeline is a particular type of parallel program structure, often used to represent loops with cross-iteration dependencies. Pipelines cannot be expressed with the typical parallel language constructs offered by most environments. Therefore, in order to run pipelines, it is necessary to write a parallel language and scheduler with specialized support for them. Some such schedulers are written exclusively for pipelines and unable to run any other type of program, which allows for certain optimizations that take advantage of the pipeline structure. Other schedulers implement support for pipelines on top of a general-purpose scheduling algorithm. One example of such an ...


Worker Demographics And Earnings On Amazon Mechanical Turk: An Exploratory Analysis, Kotaro Hara, Kristy Milland, Benjamin V. Hanrahan, Chris Callison-Burch, Abigail Adams, Saiph Savage, Jeffrey P. Bigham Sep 2019

Worker Demographics And Earnings On Amazon Mechanical Turk: An Exploratory Analysis, Kotaro Hara, Kristy Milland, Benjamin V. Hanrahan, Chris Callison-Burch, Abigail Adams, Saiph Savage, Jeffrey P. Bigham

Research Collection School Of Information Systems

Prior research reported that workers on Amazon Mechanical Turk (AMT) are underpaid, earning about $2/h. But the prior research did not investigate the difference in wage due to worker characteristics (e.g., country of residence). We present the first data-driven analysis on wage gap on AMT. Using work log data and demographic data collected via online survey, we analyse the gap in wage due to different factors. We show that there is indeed wage gap; for example, workers in the U.S. earn $3.01/h while those in India earn $1.41/h on average.


Distributed Edge Bundling For Large Graphs, Yves Tuyishime Aug 2019

Distributed Edge Bundling For Large Graphs, Yves Tuyishime

Computer Science and Engineering: Theses, Dissertations, and Student Research

Graphs or networks are widely used to depict the relationships between data entities in diverse scientific and engineering applications. A direct visualization (such as node-link diagram) of a graph with a large number of nodes and edges often incurs visual clutter. To address this issue, researchers have developed edge bundling algorithms that visually merge similar edges into curved bundles and can effectively reveal high-level edge patterns with reduced visual clutter. Although the existing edge bundling algorithms achieve appealing results, they are mostly designed for a single machine, and thereby the size of a graph they can handle is limited by ...


Exploring Eye Tracking Data On Source Code Via Dual Space Analysis, Li Zhang Aug 2019

Exploring Eye Tracking Data On Source Code Via Dual Space Analysis, Li Zhang

Computer Science and Engineering: Theses, Dissertations, and Student Research

Eye tracking is a frequently used technique to collect data capturing users' strategies and behaviors in processing information. Understanding how programmers navigate through a large number of classes and methods to find bugs is important to educators and practitioners in software engineering. However, the eye tracking data collected on realistic codebases is massive compared to traditional eye tracking data on one static page. The same content may appear in different areas on the screen with users scrolling in an Integrated Development Environment (IDE). Hierarchically structured content and fluid method position compose the two major challenges for visualization. We present a ...


Correlation-Sensitive Next-Basket Recommendation, Duc Trong Le, Hady Wirawan Lauw, Yuan Fang Aug 2019

Correlation-Sensitive Next-Basket Recommendation, Duc Trong Le, Hady Wirawan Lauw, Yuan Fang

Research Collection School Of Information Systems

Items adopted by a user over time are indicative ofthe underlying preferences. We are concerned withlearning such preferences from observed sequencesof adoptions for recommendation. As multipleitems are commonly adopted concurrently, e.g., abasket of grocery items or a sitting of media consumption, we deal with a sequence of baskets asinput, and seek to recommend the next basket. Intuitively, a basket tends to contain groups of relateditems that support particular needs. Instead of recommending items independently for the next basket, we hypothesize that incorporating informationon pairwise correlations among items would help toarrive at more coherent basket recommendations.Towards this objective, we ...


Dimensional Analysis Of Robot Software Without Developer Annotations, John-Paul W. Ore Jul 2019

Dimensional Analysis Of Robot Software Without Developer Annotations, John-Paul W. Ore

Computer Science and Engineering: Theses, Dissertations, and Student Research

Robot software risks the hazard of dimensional inconsistencies. These inconsistencies occur when a program incorrectly manipulates values representing real-world quantities. Incorrect manipulation has real-world consequences that range in severity from benign to catastrophic. Previous approaches detect dimensional inconsistencies in programs but require extra developer effort and technical complications. The extra effort involves developers creating type annotations for every variable representing a real-world quantity that has physical units, and the technical complications include toolchain burdens like specialized compilers or type libraries.

To overcome the limitations of previous approaches, this thesis presents novel methods to detect dimensional inconsistencies without developer annotations. We ...


The Design And Implementation Of Aida: Ancient Inscription Database And Analytics System, M Parvez Rashid Jul 2019

The Design And Implementation Of Aida: Ancient Inscription Database And Analytics System, M Parvez Rashid

Computer Science and Engineering: Theses, Dissertations, and Student Research

AIDA, the Ancient Inscription Database and Analytic system can be used to translate and analyze ancient Minoan language. The AIDA system currently stores three types of ancient Minoan inscriptions: Linear A, Cretan Hieroglyph and Phaistos Disk inscriptions. In addition, AIDA provides candidate syllabic values and translations of Minoan words and inscriptions into English. The AIDA system allows the users to change these candidate phonetic assignments to the Linear A, Cretan Hieroglyph and Phaistos symbols. Hence the AIDA system provides for various scholars not only a convenient online resource to browse Minoan inscriptions but also provides an analysis tool to explore ...


Design Of Personnel Big Data Management System Based On Blockchain, Houbing Song, Jian Chen, Zhihan Lv Jul 2019

Design Of Personnel Big Data Management System Based On Blockchain, Houbing Song, Jian Chen, Zhihan Lv

Publications

With the continuous development of information technology, enterprises, universities and governments are constantly stepping up the construction of electronic personnel information management system. The information of hundreds of thousands or even millions of people’s information are collected and stored into the system. So much information provides the cornerstone for the development of big data, if such data is tampered with or leaked, it will cause irreparable serious damage. However, in recent years, electronic archives have exposed a series of problems such as information leakage, information tampering, and information loss, which has made the reform of personnel information management more ...


Adaboost‑Based Security Level Classifcation Of Mobile Intelligent Terminals, Feng Wang, Houbing Song, Dingde Jiang, Hong Wen Jul 2019

Adaboost‑Based Security Level Classifcation Of Mobile Intelligent Terminals, Feng Wang, Houbing Song, Dingde Jiang, Hong Wen

Publications

With the rapid development of Internet of Things, massive mobile intelligent terminals are ready to access edge servers for real-time data calculation and interaction. However, the risk of private data leakage follows simultaneously. As the administrator of all intelligent terminals in a region, the edge server needs to clarify the ability of the managed intelligent terminals to defend against malicious attacks. Therefore, the security level classification for mobile intelligent terminals before accessing the network is indispensable. In this paper, we firstly propose a safety assessment method to detect the weakness of mobile intelligent terminals. Secondly, we match the evaluation results ...


Mathematics And Programming Exercises For Educational Robot Navigation, Ronald I. Greenberg Jul 2019

Mathematics And Programming Exercises For Educational Robot Navigation, Ronald I. Greenberg

Computer Science: Faculty Publications and Other Works

This paper points students towards ideas they can use towards developing a convenient library for robot navigation, with examples based on Botball primitives, and points educators towards mathematics and programming exercises they can suggest to students, especially advanced high school students.


A Resource Constrained Shortest Paths Approach To Reducing Personal Pollution Exposure, Elling Payne Jun 2019

A Resource Constrained Shortest Paths Approach To Reducing Personal Pollution Exposure, Elling Payne

REU Final Reports

As wildfires surge in frequency and impact in the Pacific Northwest, in tandem with increasingly traffic-choked roads, personal exposure to harmful airborne pollutants is a rising concern. Particularly at risk are school-age children, especially those living in disadvantaged communities near major motorways and industrial centers. Many of these children must walk to school, and the choice of route can effect exposure. Route-planning applications and frameworks utilizing computational shortest paths methods have been proposed which consider personal exposure with reasonable success, but few have focused on pollution exposure, and all have been limited in scalability or geographic scope. This paper addresses ...


Scheduling And Prefetching In Hadoop With Block Access Pattern Awareness And Global Memory Sharing With Load Balancing Scheme, Sai Suman Jun 2019

Scheduling And Prefetching In Hadoop With Block Access Pattern Awareness And Global Memory Sharing With Load Balancing Scheme, Sai Suman

Computer Science and Engineering: Theses, Dissertations, and Student Research

Although several scheduling and prefetching algorithms have been proposed to improve data locality in Hadoop, there has not been much research to increase cluster performance by targeting the issue of data locality while considering the 1) cluster memory, 2) data access patterns and 3) real-time scheduling issues together.

Firstly, considering the data access patterns is crucial because the computation might access some portion of the data in the cluster only once while the rest could be accessed multiple times. Blindly retaining data in memory might eventually lead to inefficient memory utilization.

Secondly, several studies found that the cluster memory goes ...


Forecasting Building Energy Consumption With Deep Learning: A Sequence To Sequence Approach, Ljubisa Sehovac, Cornelius Nesen, Katarina Grolinger Jun 2019

Forecasting Building Energy Consumption With Deep Learning: A Sequence To Sequence Approach, Ljubisa Sehovac, Cornelius Nesen, Katarina Grolinger

Electrical and Computer Engineering Publications

Energy Consumption has been continuously increasing due to the rapid expansion of high-density cities, and growth in the industrial and commercial sectors. To reduce the negative impact on the environment and improve sustainability, it is crucial to efficiently manage energy consumption. Internet of Things (IoT) devices, including widely used smart meters, have created possibilities for energy monitoring as well as for sensor based energy forecasting. Machine learning algorithms commonly used for energy forecasting such as feedforward neural networks are not well-suited for interpreting the time dimensionality of a signal. Consequently, this paper uses Recurrent Neural Networks (RNN) to capture time ...


A Data Driven Approach To Identify Journalistic 5ws From Text Documents, Venkata Krishna Mohan Sunkara Jun 2019

A Data Driven Approach To Identify Journalistic 5ws From Text Documents, Venkata Krishna Mohan Sunkara

Computer Science and Engineering: Theses, Dissertations, and Student Research

Textual understanding is the process of automatically extracting accurate high-quality information from text. The amount of textual data available from different sources such as news, blogs and social media is growing exponentially. These data encode significant latent information which if extracted accurately can be valuable in a variety of applications such as medical report analyses, news understanding and societal studies. Natural language processing techniques are often employed to develop customized algorithms to extract such latent information from text.

Journalistic 5Ws refer to the basic information in news articles that describes an event and include where, when, who, what and why ...


Mapping In The Humanities: Gis Lessons For Poets, Historians, And Scientists, Emily W. Fairey May 2019

Mapping In The Humanities: Gis Lessons For Poets, Historians, And Scientists, Emily W. Fairey

Open Educational Resources

User-friendly Geographic Information Systems (GIS) is the common thread of this collection of presentations, and activities with full lesson plans. The first section of the site contains an overview of cartography, the art of creating maps, and then looks at historical mapping platforms like Hypercities and Donald Rumsey Historical Mapping Project. In the next section Google Earth Desktop Pro is introduced, with lessons and activities on the basics of GE such as pins, paths, and kml files, as well as a more complex activity on "georeferencing" an historic map over Google Earth imagery. The final section deals with ARCGIS Online ...


Depressiongnn: Depression Prediction Using Graph Neural Network On Smartphone And Wearable Sensors, Param Bidja May 2019

Depressiongnn: Depression Prediction Using Graph Neural Network On Smartphone And Wearable Sensors, Param Bidja

Honors Scholar Theses

Depression prediction is a complicated classification problem because depression diagnosis involves many different social, physical, and mental signals. Traditional classification algorithms can only reach an accuracy of no more than 70% given the complexities of depression. However, a novel approach using Graph Neural Networks (GNN) can be used to reach over 80% accuracy, if a graph can represent the depression data set to capture differentiating features. Building such a graph requires 1) the definition of node features, which must be highly correlated with depression, and 2) the definition for edge metrics, which must also be highly correlated with depression. In ...


Paper Prototyping Comfortable Vr Play For Diverse Sensory Needs, Louanne E. Boyd, Kendra Day, Ben Wasserman, Kaitlyn Abdo, Gillian Hayes, Erik J. Linstead May 2019

Paper Prototyping Comfortable Vr Play For Diverse Sensory Needs, Louanne E. Boyd, Kendra Day, Ben Wasserman, Kaitlyn Abdo, Gillian Hayes, Erik J. Linstead

Engineering Faculty Articles and Research

We co-designed paper prototype dashboards for virtual environments for three children with diverse sensory needs. Our goal was to determine individual interaction styles in order to enable comfortable and inclusive play. As a first step towards an inclusive virtual world, we began with designing for three sensory-diverse children who have labels of neurotypical, ADHD, and autism respectively. We focused on their leisure interests and their individual sensory profiles. We present the results of co-design with family members and paper prototyping sessions conducted by family members with the children. The results contribute preliminary empirical findings for accommodating different levels of engagement ...


Image Processing Algorithms For Elastin Lamellae Inside Cardiovascular Arteries, Mahmoud Habibnezhad May 2019

Image Processing Algorithms For Elastin Lamellae Inside Cardiovascular Arteries, Mahmoud Habibnezhad

Computer Science and Engineering: Theses, Dissertations, and Student Research

Automated image processing methods are greatly needed to replace the tedious, manual histology analysis still performed by many physicians. This thesis focuses on pathological studies that express the essential role of elastin lamella in the resilience and elastic properties of the arterial blood vessels. Due to the stochastic nature of the shape and distribution of the elastin layers, their morphological features appear as the best candidates to develop a mathematical formulation for the resistance behavior of elastic tissues. However, even for trained physicians and their assistants, the current measurement procedures are highly error-prone and prolonged. This thesis successfully integrates such ...


A Data-Driven Approach For Detecting Stress In Plants Using Hyperspectral Imagery, Suraj Gampa May 2019

A Data-Driven Approach For Detecting Stress In Plants Using Hyperspectral Imagery, Suraj Gampa

Computer Science and Engineering: Theses, Dissertations, and Student Research

A phenotype is an observable characteristic of an individual and is a function of its genotype and its growth environment. Individuals with different genotypes are impacted differently by exposure to the same environment. Therefore, phenotypes are often used to understand morphological and physiological changes in plants as a function of genotype and biotic and abiotic stress conditions. Phenotypes that measure the level of stress can help mitigate the adverse impacts on the growth cycle of the plant. Image-based plant phenotyping has the potential for early stress detection by means of computing responsive phenotypes in a non-intrusive manner. A large number ...


Scalable Subgraph Counting: The Methods Behind The Madness, Comandur Seshadhri, Srikanta Tirthapura May 2019

Scalable Subgraph Counting: The Methods Behind The Madness, Comandur Seshadhri, Srikanta Tirthapura

Electrical and Computer Engineering Conference Papers, Posters and Presentations

Subgraph counting is a fundamental problem in graph analysis that finds use in a wide array of applications. The basic problem is to count or approximate the occurrences of a small subgraph (the pattern) in a large graph (the dataset). Subgraph counting is a computationally challenging problem, and the last few years have seen a rich literature develop around scalable solutions for it. However, these results have thus far appeared as a disconnected set of ideas that are applied separately by different research groups. We observe that there are a few common algorithmic building blocks that most subgraph counting results ...


A Survey On The Role Of Individual Differences On Visual Analytics Interactions: Masters Project Report, Jesse Huang, Alvitta Ottley May 2019

A Survey On The Role Of Individual Differences On Visual Analytics Interactions: Masters Project Report, Jesse Huang, Alvitta Ottley

All Computer Science and Engineering Research

There is ample evidence in the visualization commu- nity that individual differences matter. These prior works high- light various traits and cognitive abilities that can modulate the use of the visualization systems and demonstrate a measurable influence on speed, accuracy, process, and attention. Perhaps the most important implication of this body of work is that we can use individual differences as a mechanism for estimating people’s potential to effectively leverage visual interfaces or to identify those people who may struggle. As visual literacy and data fluency continue to become essential skills for our everyday lives, we must embrace the ...


Smart Home Audio Assistant, Xipeng Wang May 2019

Smart Home Audio Assistant, Xipeng Wang

All Computer Science and Engineering Research

This report introduces an audio processing algorithm. It provides a way to access smart devices using audio. Although there are many audio assistants already on the market, most of them will not be able to control the smart devices. Therefore, this new system presented in this report will provide a way to analysis the customer’s questions. Then the algorithm will be able to query smart device information, modify the schedule or provide the reason for some arrangement.


Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah Apr 2019

Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah

Faculty Publications

The extra quantities of wastewater entering the pipes can cause backups that result in sanitary sewer overflows. Urban underground infrastructure monitoring is important for controlling the flow of extraneous water into the pipelines. By combining the wireless underground communications and sensor solutions, the urban underground IoT applications such as real time wastewater and storm water overflow monitoring can be developed. In this paper, the path loss analysis of wireless underground communications in urban underground IoT for wastewater monitoring has been presented. It has been shown that the communication range of up to 4 kilometers can be achieved from an underground ...


An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam Apr 2019

An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam

Faculty Publications

Underground sensing and propagation of Signals in the Soil (SitS) medium is an electromagnetic issue. The path loss prediction with higher accuracy is an open research subject in digital agriculture monitoring applications for sensing and communications. The statistical data are predominantly derived from site-specific empirical measurements, which is considered an impediment to universal application. Nevertheless, in the existing literature, statistical approaches have been applied to the SitS channel modeling, where impulse response analysis and the Friis open space transmission formula are employed as the channel modeling tool in different soil types under varying soil moisture conditions at diverse communication distances ...


Challenges In Integrating Iot In Smart Home, Leiquan Pan, Chenyang Lu Apr 2019

Challenges In Integrating Iot In Smart Home, Leiquan Pan, Chenyang Lu

All Computer Science and Engineering Research

Wireless devices have become a major part in Smart Home industry. Almost every smart home company has its own wireless solutions and cloud services. Normally, customers can only monitor and control smart devices through applications or platforms companies provided. It causes inconveniences and problems when we have lots of smart devices. In my master project, I did two projects to implement smart home IoT applications. From a single functionality IoT application to a more complicated smart home system, there are lots of challenges and problems appeared. This article will mainly focus on challenges in integrating IoT in a smart home.


Holistic Resource Allocation For Multicore Real-Time Systems, Meng Xu, Linh T.X. Phan, Hyon-Young Choi, Yuhan Lin, Haoran Li, Chenyang Lu, Insup Lee Apr 2019

Holistic Resource Allocation For Multicore Real-Time Systems, Meng Xu, Linh T.X. Phan, Hyon-Young Choi, Yuhan Lin, Haoran Li, Chenyang Lu, Insup Lee

Departmental Papers (CIS)

This paper presents CaM, a holistic cache and memory bandwidth resource allocation strategy for multicore real-time systems. CaM is designed for partitioned scheduling, where tasks are mapped onto cores, and the shared cache and memory bandwidth resources are partitioned among cores to reduce resource interferences due to concurrent accesses. Based on our extension of LITMUSRT with Intel’s Cache Allocation Technology and MemGuard, we present an experimental evaluation of the relationship between the allocation of cache and memory bandwidth resources and a task’s WCET. Our resource allocation strategy exploits this relationship to map tasks onto cores, and to ...


Underground Environment Aware Mimo Design Using Transmit And Receive Beamforming In Internet Of Underground Things, Abdul Salam Apr 2019

Underground Environment Aware Mimo Design Using Transmit And Receive Beamforming In Internet Of Underground Things, Abdul Salam

Faculty Publications

In underground (UG) multiple-input and multiple-output (MIMO), the transmit beamforming is used to focus energy in the desired direction. There are three different paths in the underground soil medium through which the waves propagates to reach at the receiver. When the UG receiver receives a desired data stream only from the desired path, then the UG MIMO channel becomes three path (lateral, direct, and reflected) interference channel. Accordingly, the capacity region of the UG MIMO three path interference channel and degrees of freedom (multiplexing gain of this MIMO channel requires careful modeling). Therefore, expressions are required derived the degrees of ...


Integrating Mathematics And Educational Robotics: Simple Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal, Sara T. Greenberg Apr 2019

Integrating Mathematics And Educational Robotics: Simple Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal, Sara T. Greenberg

Computer Science: Faculty Publications and Other Works

This paper shows how students can be guided to integrate elementary mathematical analyses with motion planning for typical educational robots. Rather than using calculus as in comprehensive works on motion planning, we show students can achieve interesting results using just simple linear regression tools and trigonometric analyses. Experiments with one robotics platform show that use of these tools can lead to passable navigation through dead reckoning even if students have limited experience with use of sensors, programming, and mathematics.


On Efficiency Of Artifact Lookup Strategies In Digital Forensics, Lorenz Liebler, Patrick Schmitt, Harald Baier, Frank Breitinger Apr 2019

On Efficiency Of Artifact Lookup Strategies In Digital Forensics, Lorenz Liebler, Patrick Schmitt, Harald Baier, Frank Breitinger

Electrical & Computer Engineering and Computer Science Faculty Publications

In recent years different strategies have been proposed to handle the problem of ever-growing digital forensic databases. One concept to deal with this data overload is data reduction, which essentially means to separate the wheat from the chaff, e.g., to filter in forensically relevant data. A prominent technique in the context of data reduction are hash-based solutions. Data reduction is achieved because hash values (of possibly large data input) are much smaller than the original input. Today's approaches of storing hash-based data fragments reach from large scale multithreaded databases to simple Bloom filter representations. One main focus was ...