Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Computer Engineering

Evaluation And Analysis Of Null Convention Logic Circuits, John Davis Brady Dec 2019

Evaluation And Analysis Of Null Convention Logic Circuits, John Davis Brady

Graduate Theses and Dissertations

Integrated circuit (IC) designers face many challenges in utilizing state-of-the-art technology nodes, such as the increased effects of process variation on timing analysis and heterogeneous multi-die architectures that span across multiple technologies while simultaneously increasing performance and decreasing power consumption. These challenges provide opportunity for utilization of asynchronous design paradigms due to their inherent flexibility and robustness.

While NULL Convention Logic (NCL) has been implemented in a variety of applications, current literature does not fully encompass the intricacies of NCL power performance across a variety of applications, technology nodes, circuit scale, and voltage scaling, thereby preventing further adoption and utilization …


Technology Mapping, Design For Testability, And Circuit Optimizations For Null Convention Logic Based Architectures, Farhad Alibeygi Parsan Dec 2014

Technology Mapping, Design For Testability, And Circuit Optimizations For Null Convention Logic Based Architectures, Farhad Alibeygi Parsan

Graduate Theses and Dissertations

Delay-insensitive asynchronous circuits have been the target of a renewed research effort because of the advantages they offer over traditional synchronous circuits. Minimal timing analysis, inherent robustness against power-supply, temperature, and process variations, reduced energy consumption, less noise and EMI emission, and easy design reuse are some of the benefits of these circuits. NULL Convention Logic (NCL) is one of the mainstream asynchronous logic design paradigms that has been shown to be a promising method for designing delay-insensitive asynchronous circuits.

This dissertation investigates new areas in NCL design and test and is made of three sections. The first section discusses …


Generic Algorithms And Null Convention Logic Hardware Implementation For Unsigned And Signed Quad-Rail Multiplication, Samarsen Reddy Mallepalli Jan 2007

Generic Algorithms And Null Convention Logic Hardware Implementation For Unsigned And Signed Quad-Rail Multiplication, Samarsen Reddy Mallepalli

Masters Theses

"This thesis focuses on designing generic quad-rail arithmetic circuits, such as signed and unsigned multipliers and Multiply and Accumulate (MAC) units, using the asynchronous delay-insensitive NULL Convention Logic (NCL) paradigm. This work helps to build a library of reusable components to be used for automated NCL circuit synthesis, which will aid in the integration of asynchronous design paradigms into the semiconductor industry"--Abstract, page iii.


Delay-Insensitive Ternary Logic (Ditl), Ravi Sankar Parameswaran Nair Jan 2007

Delay-Insensitive Ternary Logic (Ditl), Ravi Sankar Parameswaran Nair

Masters Theses

"This thesis focuses on development of a Single Rail Ternary Voltage Delay-Insensitive paradigm called Delay-Insensitive Ternary Logic (DITL), which is based on NULL Convention Logic (NCL). Single rail asynchronous logic has potential advantages over Dual-Rail logic such as reduction of Power and Interconnect as well as Logic Area. The DITL concept is developed in steps of individual circuit components. These components are designed at the transistor level and are connected together to form a registered pipeline system. Some variations in pipeline design are also investigated"--Abstract, page iii.