Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Computer Engineering

Memory Architecture Template For Fast Block Matching Algorithms On Field Programmable Gate Arrays, Shant Chandrakar Dec 2009

Memory Architecture Template For Fast Block Matching Algorithms On Field Programmable Gate Arrays, Shant Chandrakar

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Fast Block Matching (FBM) algorithms for video compression are well suited for acceleration using parallel data-path architectures on Field Programmable Gate Arrays (FPGAs). However, designing an efficient on-chip memory subsystem to provide the required throughput to this parallel data-path architecture is a complex problem. This thesis presents a memory architecture template that can be parameterized for a given FBM algorithm, number of parallel Processing Elements (PEs), and block size. The template can be parameterized with well known exploration techniques to design efficient on-chip memory subsystems. The memory subsystems are derived for two existing FBM algorithms and are implemented on a …


Exploiting Matrix Symmetry To Improve Fpgaaccelerated Conjugate Gradient, Jason D. Bakos, Krishna K. Nagar Apr 2009

Exploiting Matrix Symmetry To Improve Fpgaaccelerated Conjugate Gradient, Jason D. Bakos, Krishna K. Nagar

Faculty Publications

In this paper we describe a new approach for accelerating the Conjugate Gradient (CG) method using an FPGA co-processor. As in previous approaches, our co-processor performs a double-precision sparse matrix-vector multiplication. However, our implementation doubles the amount of computation per unit of input data by exploiting the symmetry of the input matrix and computing the upper and lower triangle of the input matrix in parallel. Using a Virtex-2 Pro 100 FPGA, we have achieved an observed computational throughput of 1155 MFLOPS.


Application Specific Customization And Scalability Of Soft Multiprocessors, Deepak C. Unnikrishnan Jan 2009

Application Specific Customization And Scalability Of Soft Multiprocessors, Deepak C. Unnikrishnan

Masters Theses 1911 - February 2014

Soft multiprocessor systems exploit the plentiful computational resources available in field programmable devices. By virtue of their adaptability and ability to support coarse grained parallelism, they serve as excellent platforms for rapid prototyping and design space exploration of embedded multiprocessor applications. As complex applications emerge, careful mapping, processor and interconnect customization are critical to the overall performance of the multiprocessor system. In this thesis, we have developed an automated scalable framework to efficiently map applications written in a high-level programmer-friendly language to customizable soft-cores. The framework allows the user to specify the application in a high-level language called Streamit. After …