Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Earth Sciences

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 33

Full-Text Articles in Computer Engineering

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak Sep 2020

A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak

Faculty Publications

Wireless underground sensor networks (WUSNs) are becoming ubiquitous in many areas. The design of robust systems requires extensive understanding of the underground (UG) channel characteristics. In this paper, an UG channel impulse response is modeled and validated via extensive experiments in indoor and field testbed settings. The three distinct types of soils are selected with sand and clay contents ranging from $13\%$ to $86\%$ and $3\%$ to $32\%$, respectively. The impacts of changes in soil texture and soil moisture are investigated with more than $1,200$ measurements in a novel UG testbed that allows flexibility in soil moisture control. Moreover, the …


Decision Agriculture, Abdul Salam, Usman Raza Aug 2020

Decision Agriculture, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, the latest developments in the field of decision agriculture are discussed. The practice of management zones in digital agriculture is described for efficient and smart faming. Accordingly, the methodology for delineating management zones is presented. Modeling of decision support systems is explained along with discussion of the issues and challenges in this area. Moreover, the precision agriculture technology is also considered. Moreover, the chapter surveys the state of the decision agriculture technologies in the countries such as Bulgaria, Denmark, France, Israel, Malaysia, Pakistan, United Kingdom, Ukraine, and Sweden. Finally, different field factors such as GPS accuracy and …


Underground Phased Arrays And Beamforming Applications, Abdul Salam, Usman Raza Aug 2020

Underground Phased Arrays And Beamforming Applications, Abdul Salam, Usman Raza

Faculty Publications

This chapter presents a framework for adaptive beamforming in underground communication. The wireless propagation is thoroughly analyzed to develop a model using the soil moisture as an input parameter to provide feedback mechanism while enhancing the system performance. The working of array element in the soil is analyzed. Moreover, the effect of soil texture and soil moisture on the resonant frequency and return loss is studied in detail. The wave refraction from the soil–air interface highly degrades the performance of the system. Furthermore, to beam steering is done to achieve high gain for lateral component improving the UG communication. The …


Signals In The Soil: An Introduction To Wireless Underground Communications, Abdul Salam, Usman Raza Aug 2020

Signals In The Soil: An Introduction To Wireless Underground Communications, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, wireless underground (UG) communications are introduced. A detailed overview of WUC is given. A comprehensive review of research challenges in WUC is presented. The evolution of underground wireless is also discussed. Moreover, different component of UG communications is wireless. The WUC system architecture is explained with a detailed discussion of the anatomy of an underground mote. The examples of UG wireless communication systems are explored. Furthermore, the differences of UG wireless and over-the-air wireless are debated. Different types of wireless underground channel (e.g., In-Soil, Soil-to-Air, and Air-to-Soil) are reported as well.


Underground Wireless Channel Bandwidth And Capacity, Abdul Salam, Usman Raza Aug 2020

Underground Wireless Channel Bandwidth And Capacity, Abdul Salam, Usman Raza

Faculty Publications

The UG channel bandwidth and capacity are vital parameters in wireless underground communication system design. In this chapter, a comprehensive analysis of the wireless underground channel capacity is presented. The impact of soil on return loss, bandwidth, and path loss is discussed. The results of underground multi-carrier modulation capacity are also outlined. Moreover, the single user capacity and multi-carrier capacity are also introduced with an in-depth treatment of soil texture, soil moisture, and distance effects on channel capacity. Finally, the chapter is concluded with a discussion of challenges and open research issues.


Signals In The Soil: Underground Antennas, Abdul Salam, Usman Raza Aug 2020

Signals In The Soil: Underground Antennas, Abdul Salam, Usman Raza

Faculty Publications

Antenna is a major design component of Internet of Underground Things (IOUT) communication system. The use of antenna, in IOUT, differs from traditional communication in that it is buried in the soil. Therefore, one of the main challenges, in IOUT applications, is to establish a reliable communication. To that end, there is a need of designing an underground-specific antenna. Three major factors that can impact the performance of a buried antenna are: (1) effect of high soil permittivity changes the wavelength of EM waves, (2) variations in soil moisture with time affecting the permittivity of the soil, and (3) difference …


Soil Moisture And Permittivity Estimation, Abdul Salam, Usman Raza Aug 2020

Soil Moisture And Permittivity Estimation, Abdul Salam, Usman Raza

Faculty Publications

The soil moisture and permittivity estimation is vital for the success of the variable rate approaches in the field of the decision agriculture. In this chapter, the development of a novel permittivity estimation and soil moisture sensing approach is presented. The empirical setup and experimental methodology for the power delay measurements used in model are introduced. Moreover, the performance analysis is explained that includes the model validation and error analysis. The transfer functions are reported as well for soil moisture and permittivity estimation. Furthermore, the potential applications of the developed approach in different disciplines are also examined.


Current Advances In Internet Of Underground Things, Abdul Salam, Usman Raza Aug 2020

Current Advances In Internet Of Underground Things, Abdul Salam, Usman Raza

Faculty Publications

The latest developments in Internet of Underground Things are covered in this chapter. First, the IOUT Architecture is discussed followed by the explanation of the challenges being faced in this paradigm. Moreover, a comprehensive coverage of the different IOUT components is presented that includes communications, sensing, and system integration with the cloud. An in-depth coverage of the applications of the IOUT in various disciplines is also surveyed. These applications include areas such as decision agriculture, pipeline monitoring, border control, and oil wells.


Signals In The Soil: Subsurface Sensing, Abdul Salam, Usman Raza Aug 2020

Signals In The Soil: Subsurface Sensing, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, novel subsurface soil sensing approaches are presented for monitoring and real-time decision support system applications. The methods, materials, and operational feasibility aspects of soil sensors are explored. The soil sensing techniques covered in this chapter include aerial sensing, in-situ, proximal sensing, and remote sensing. The underlying mechanism used for sensing is also examined as well. The sensor selection and calibration techniques are described in detail. The chapter concludes with discussion of soil sensing challenges.


Autonomous Irrigation Management In Decision Agriculture, Abdul Salam, Usman Raza Aug 2020

Autonomous Irrigation Management In Decision Agriculture, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, the important application of autonomous irrigation management in the field decision agriculture is discussed. The different types of sensor-guided irrigation systems are presented that includes center pivot systems and drip irrigation systems. Their sensing and actuator components are with detailed focus on real-time decision-making and integration to the cloud. This chapter also presents irrigation control systems which takes, as an input, soil moisture and temperature from IOUT and weather data from Internet and communicate with center pivot based irrigation systems. Moreover, the system architecture is explored where development of the nodes including sensing and actuators is presented. …


Variable Rate Applications In Decision Agriculture, Abdul Salam, Usman Raza Aug 2020

Variable Rate Applications In Decision Agriculture, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, the variable rate applications (VRA) are presented for the field of decision agriculture. The characteristics of VRA control systems are described along with control hardware. Different types of VRA systems are discussed (e.g., liquid VRA systems and dry VRA systems). A case study is also explored in this regard. Moreover, recent advances and future trends are also outlined. Accordingly, a sustainable variable-rate irrigation scheduling is studied where different hardware and software component of the cyber-physical system are considered. Finally, chapter is concluded with a novel sensor deployment methodology.


Zenneck Waves In Decision Agriculture: An Empirical Verification And Application In Em-Based Underground Wireless Power Transfer, Usman Raza, Abdul Salam May 2020

Zenneck Waves In Decision Agriculture: An Empirical Verification And Application In Em-Based Underground Wireless Power Transfer, Usman Raza, Abdul Salam

Faculty Publications

In this article, the results of experiments for the observation of Zenneck surface waves in sub GHz frequency range using dipole antennas are presented. Experiments are conducted over three different soils for communications distances of up to 1 m. This empirical analysis confirms the existence of Zenneck waves over the soil surface. Through the power delay profile (PDP) analysis, it has been shown that other subsurface components exhibit rapid decay as compared to the Zenneck waves. A potential application of the Zenneck waves for energy transmission in the area of decision agriculture is explored. Accordingly, a novel wireless through-the-soil power …


Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann Apr 2020

Nonlinear Least Squares 3-D Geolocation Solutions Using Time Differences Of Arrival, Michael V. Bredemann

Mathematics & Statistics ETDs

This thesis uses a geometric approach to derive and solve nonlinear least squares minimization problems to geolocate a signal source in three dimensions using time differences of arrival at multiple sensor locations. There is no restriction on the maximum number of sensors used. Residual errors reach the numerical limits of machine precision. Symmetric sensor orientations are found that prevent closed form solutions of source locations lying within the null space. Maximum uncertainties in relative sensor positions and time difference of arrivals, required to locate a source within a maximum specified error, are found from these results. Examples illustrate potential requirements …


Wireless Underground Communications In Sewer And Stormwater Overflow Monitoring: Radio Waves Through Soil And Asphalt Medium, Usman Raza, Abdul Salam Feb 2020

Wireless Underground Communications In Sewer And Stormwater Overflow Monitoring: Radio Waves Through Soil And Asphalt Medium, Usman Raza, Abdul Salam

Faculty Publications

Storm drains and sanitary sewers are prone to backups and overflows due to extra amount wastewater entering the pipes. To prevent that, it is imperative to efficiently monitor the urban underground infrastructure. The combination of sensors system and wireless underground communication system can be used to realize urban underground IoT applications, e.g., storm water and wastewater overflow monitoring systems. The aim of this article is to establish a feasibility of the use of wireless underground communications techniques, and wave propagation through the subsurface soil and asphalt layers, in an underground pavement system for storm water and sewer overflow monitoring application. …


Real-Time Urban Weather Observations For Urban Air Mobility, Kevin A. Adkins, Mustafa Akbas, Marc Compere Jan 2020

Real-Time Urban Weather Observations For Urban Air Mobility, Kevin A. Adkins, Mustafa Akbas, Marc Compere

International Journal of Aviation, Aeronautics, and Aerospace

Cities of the future will have to overcome congestion, air pollution and increasing infrastructure cost while moving more people and goods smoothly, efficiently and in an eco-friendly manner. Urban air mobility (UAM) is expected to be an integral component of achieving this new type of city. This is a new environment for sustained aviation operations. The heterogeneity of the urban fabric and the roughness elements within it create a unique environment where flight conditions can change frequently across very short distances. UAM vehicles with their lower mass, more limited thrust and slower speeds are especially sensitive to these conditions. Since …


Glaciernet: A Deep-Learning Approach For Debris-Covered Glacier Mapping, Zhiyuan Xie, Umesh K. Haritashya, Vijayan K. Asari, Brennan W. Young, Michael P. Bishop, Jeffrey S. Kargel Jan 2020

Glaciernet: A Deep-Learning Approach For Debris-Covered Glacier Mapping, Zhiyuan Xie, Umesh K. Haritashya, Vijayan K. Asari, Brennan W. Young, Michael P. Bishop, Jeffrey S. Kargel

Electrical and Computer Engineering Faculty Publications

Rising global temperatures over the past decades is directly affecting glacier dynamics. To understand glacier fluctuations and document regional glacier-state trends, glacier-boundary detection is necessary. Debris-covered glacier (DCG) mapping, however, is notoriously difficult using conventional geospatial technology methods. Therefore, in this research for automated DCG mapping, we evaluate the utility of a convolutional neural network (CNN), which is a deep learning feed-forward neural network. The CNN inputs include Landsat satellite images, an Advanced Land Observation Satellite (ALOS) digital elevation model (DEM) and DEM-derived land-surface parameters. Our CNN based deep-learning approach named GlacierNet was designed by appropriately choosing the type, number …


Multi-Resolution Spatio-Temporal Change Analyses Of Hydro-Climatological Variables In Association With Large-Scale Oceanic-Atmospheric Climate Signals, Kazi Ali Tamaddun May 2019

Multi-Resolution Spatio-Temporal Change Analyses Of Hydro-Climatological Variables In Association With Large-Scale Oceanic-Atmospheric Climate Signals, Kazi Ali Tamaddun

UNLV Theses, Dissertations, Professional Papers, and Capstones

The primary objective of the work presented in this dissertation was to evaluate the change patterns, i.e., a gradual change known as the trend, and an abrupt change known as the shift, of multiple hydro-climatological variables, namely, streamflow, snow water equivalent (SWE), temperature, precipitation, and potential evapotranspiration (PET), in association with the large-scale oceanic-atmospheric climate signals. Moreover, both observed datasets and modeled simulations were used to evaluate such change patterns to assess the efficacy of the modeled datasets in emulating the observed trends and shifts under the influence of uncertainties and inconsistencies. A secondary objective of this study was to …


Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah Apr 2019

Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah

Faculty Publications

The extra quantities of wastewater entering the pipes can cause backups that result in sanitary sewer overflows. Urban underground infrastructure monitoring is important for controlling the flow of extraneous water into the pipelines. By combining the wireless underground communications and sensor solutions, the urban underground IoT applications such as real time wastewater and storm water overflow monitoring can be developed. In this paper, the path loss analysis of wireless underground communications in urban underground IoT for wastewater monitoring has been presented. It has been shown that the communication range of up to 4 kilometers can be achieved from an underground …


An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam Apr 2019

An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam

Faculty Publications

Underground sensing and propagation of Signals in the Soil (SitS) medium is an electromagnetic issue. The path loss prediction with higher accuracy is an open research subject in digital agriculture monitoring applications for sensing and communications. The statistical data are predominantly derived from site-specific empirical measurements, which is considered an impediment to universal application. Nevertheless, in the existing literature, statistical approaches have been applied to the SitS channel modeling, where impulse response analysis and the Friis open space transmission formula are employed as the channel modeling tool in different soil types under varying soil moisture conditions at diverse communication distances …


Underground Environment Aware Mimo Design Using Transmit And Receive Beamforming In Internet Of Underground Things, Abdul Salam Apr 2019

Underground Environment Aware Mimo Design Using Transmit And Receive Beamforming In Internet Of Underground Things, Abdul Salam

Faculty Publications

In underground (UG) multiple-input and multiple-output (MIMO), the transmit beamforming is used to focus energy in the desired direction. There are three different paths in the underground soil medium through which the waves propagates to reach at the receiver. When the UG receiver receives a desired data stream only from the desired path, then the UG MIMO channel becomes three path (lateral, direct, and reflected) interference channel. Accordingly, the capacity region of the UG MIMO three path interference channel and degrees of freedom (multiplexing gain of this MIMO channel requires careful modeling). Therefore, expressions are required derived the degrees of …


Internet Of Things In Smart Agriculture: Enabling Technologies, Abdul Salam, Syed Shah Jan 2019

Internet Of Things In Smart Agriculture: Enabling Technologies, Abdul Salam, Syed Shah

Faculty Publications

In this paper, an IoT technology research and innovation roadmap for the field of precision agriculture (PA) is presented. Many recent practical trends and the challenges have been highlighted. Some important objectives for integrated technology research and education in precision agriculture are described. Effective IoT based communications and sensing approaches to mitigate challenges in the area of precision agriculture are presented.


Remote Sensing Using I-Band And S-Band Signals Of Opportunity, Kadir Efecik, Benjamin R. Nold, James L. Garrison Aug 2018

Remote Sensing Using I-Band And S-Band Signals Of Opportunity, Kadir Efecik, Benjamin R. Nold, James L. Garrison

The Summer Undergraduate Research Fellowship (SURF) Symposium

Measurement of soil moisture, especially the root zone soil moisture, is important in agriculture, meteorology, and hydrology. Root zone soil moisture is concerned with the first meter down the soil. Active and passive remote sensing methods used today utilizing L-band(1-2GHz) are physically limited to a sensing depth of about 5 cm or less. To remotely sense the soil moisture in the deeper parts of the soil, the frequency should be lowered. Lower frequencies cannot be used in active spaceborne instruments because of their need for larger antennas, radio frequency interference (RFI), and frequency spectrum allocations. Ground-based passive remote sensing using …


How Useful Is Gsv As An Environmental Observation Tool? An Analysis Of The Evidence So Far., Katherine Nesse, Leah Airt Oct 2017

How Useful Is Gsv As An Environmental Observation Tool? An Analysis Of The Evidence So Far., Katherine Nesse, Leah Airt

SPU Works

Researchers in many disciplines have turned to Google Street View to replace pedestrian- or carbased in-person observation of streetscapes. It is most prevalent within the research literature on the relationship between neighborhood environments and public health but has been used as diverse as disaster recovery, ecology and wildlife habitat, and urban design. Evaluations of the tool have found that the results of GSV-based observation are similar to the results from in-person observation although the similarity depends on the type of characteristic being observed. Larger, permanent and discrete features showed more consistency between the two methods and smaller, transient and judgmental …


Numerical Analysis Of Flexural Slip During Viscoelastic Buckle Folding, Davi Rodrigues Damasceno Jan 2016

Numerical Analysis Of Flexural Slip During Viscoelastic Buckle Folding, Davi Rodrigues Damasceno

Masters Theses

"Flexural slip is considered to be an important folding mechanism contributing in the development of different folds such as chevron, and kink-band buckle folds. Various filed studies have provided a general conceptual and qualitative understanding of flexural slip. However, quantitative evidence of the importance of the flexural slip mechanism during fold evolution is sparse, as the actual amount of surface parallel displacement, and timing, is difficult to measure accurately, due to the lack of suitable strain markers.

In this study 2D finite element analysis is used to overcome these disadvantages and to simulate flexural slip during viscoelastic buckle folding. Variations …


Crowdsourced Earthquake Early Warning, Sarah Minson, Benjamin Brooks, Craig Glennie, Jessica Murray, John Langbein, Susan Owen, Thomas Heaton, Robert Iannucci, Darren Hauser Mar 2015

Crowdsourced Earthquake Early Warning, Sarah Minson, Benjamin Brooks, Craig Glennie, Jessica Murray, John Langbein, Susan Owen, Thomas Heaton, Robert Iannucci, Darren Hauser

Robert A Iannucci

Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.


Automated Image Interpretation For Science Autonomy In Robotic Planetary Exploration, Raymond Francis Aug 2014

Automated Image Interpretation For Science Autonomy In Robotic Planetary Exploration, Raymond Francis

Electronic Thesis and Dissertation Repository

Advances in the capabilities of robotic planetary exploration missions have increased the wealth of scientific data they produce, presenting challenges for mission science and operations imposed by the limits of interplanetary radio communications. These data budget pressures can be relieved by increased robotic autonomy, both for onboard operations tasks and for decision- making in response to science data.

This thesis presents new techniques in automated image interpretation for natural scenes of relevance to planetary science and exploration, and elaborates autonomy scenarios under which they could be used to extend the reach and performance of exploration missions on planetary surfaces.

Two …


A Comparative Study Of Underwater Robot Path Planning Algorithms For Adaptive Sampling In A Network Of Sensors, Sreeja Banerjee Aug 2014

A Comparative Study Of Underwater Robot Path Planning Algorithms For Adaptive Sampling In A Network Of Sensors, Sreeja Banerjee

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Monitoring lakes, rivers, and oceans is critical to improving our understanding of complex large-scale ecosystems. We introduce a method of underwater monitoring using semi-mobile underwater sensor networks and mobile underwater robots in this thesis. The underwater robots can move freely in all dimension while the sensor nodes are anchored to the bottom of the water column and can move only up and down along the depth of the water column. We develop three different algorithms to optimize the path of the underwater robot and the positions of the sensors to improve the overall quality of sensing of an area of …


Improving The Performance Of The Parallel Ice Sheet Model On A Large-Scale, Distributed Supercomputer, Timothy J. Morey May 2013

Improving The Performance Of The Parallel Ice Sheet Model On A Large-Scale, Distributed Supercomputer, Timothy J. Morey

Electronic Theses and Dissertations

In this thesis, we describe our work to understand and improve the performance and scalability of the Parallel Ice Sheet Model (PISM) on the Ranger supercomputer. PISM enables the simulation of large-scale ice sheets, such as those found in Greenland and Antarctica, which are of particular interest to climate scientists due to their potential to contribute to sea-level rise.

PISM has a unique parallel architecture that is designed to take advantage of the computational resources available on state-of-the-art supercomputers. The problem, however, is that even though PISM can run without modifcation on a supercomputer, it is generally unable to do …


Remote Analysis Of Grain Size Characteristic In Submarine Pyroclastic Deposits From Kolumbo Volcano, Greece, Clara Smart, D. P. Whitesell, Christopher N. Roman, Steven Carey Dec 2011

Remote Analysis Of Grain Size Characteristic In Submarine Pyroclastic Deposits From Kolumbo Volcano, Greece, Clara Smart, D. P. Whitesell, Christopher N. Roman, Steven Carey

Graduate School of Oceanography Faculty Publications

Grain size characteristics of pyroclastic deposits provide valuable information about source eruption energetics and depositional processes. Maximum size and sorting are often used to discriminate between fallout and sediment gravity flow processes during explosive eruptions. In the submarine environment the collection of such data in thick pyroclastic sequences is extremely challenging and potentially time consuming. A method has been developed to extract grain size information from stereo images collected by a remotely operated vehicle (ROV). In the summer of 2010 the ROV Hercules collected a suite of stereo images from a thick pumice sequence in the caldera walls of Kolumbo …